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Abstract 

Image processing applications involve different processes, such as: image 

enhancement, edge detection, object detection, noise removal, color 

quantization, etc. Image processing applications are characterized as time and 

memory demanding applications, and, for many practical and strategic 

applications, needs to be speeded up by using faster computing systems. 

The main objective of this work is to develop and evaluate the performance of 

a Distributed Image Processing (DIP) model that can be used to perform 

extensive image processing computations, on continuous feed-in images, on a 

LAN-Based computer system. The model is based on the widely-used 

processor-farm parallel methodology, in which each processor executes the 

same program independently from other processors, each operating on a 

different part of the total data. Therefore, no interprocessor communication is 

required other than that involved in forwarding data/results to and from the 

processors. 

For equivalent calculations, the computation times on a single processor (PC) 

and a LAN-based computing system of various number of processors (PCs), 

are compared, and the resulting speedup (S), parallelization efficiency (E), and 

image processing rate ( ) are quoted. For the LAN-based system, the effect of 
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 varying the number of PCs, the number of images and execution time algorithm 

on the overall system speedup, efficiency, and image processing rate, are 

estimated. 

The LAN-based DIP model demonstrates an excellent performance for 

recourse-demanding image processing applications in terms of simplicity, 

adaptability, flexibility, expandability, transparency, and high efficiency. It 

efficiently utilizes the computational power of a LAN-Based system using a Java 

Parallel Virtual Machine (JPVM) library as a data communication toolset for 

message passing between PCs, where, for standard image processing 

computations, it achieves parallelization efficiencies that vary between 87% to 

60% when the number of PCs varies between 2 to 5 PCs connected through 

10/100 Mbps Ethernet switch. 
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Chapter One 
Introduction 

1.1. Image Processing Applications  

Digital image processing is an ever expanding area with applications reaching 

out our everyday life such as medicine, space exploration, surveillance, 

authentication, automated industry inspection, security, and many more areas. 

Such applications involve different processes like image enhancement, edge 

detection, object detection, noise removal, color quantization, etc [Rao 06, Civ 

04, and Mai 06]. 

The image processing application that is considered in this thesis performs 

edge detection in distorted or noisy images. In particular, it uses one of the most 

efficient and reliable edge detection algorithms, namely, Sobel algorithm [Kel 

05, Rou 06]. However, due to the presence of noise, the performance of the 

edge detection algorithm is degraded as the noise level increases. To enhance 

the performance of the edge detection algorithm for processing distorted 

images, a pre-processing noise removal algorithm is performed for image 

enhancement. Median filter, which is based on the time-consuming convolution 

algorithm, is the most widely used filter for noise reduction or removal in 

distorted images. A detail description of the above image processing algorithms 

will be presented in Chapter 3.  

Image processing applications are characterized as resource (processing time 

and memory) demanding applications, and, for many practical and strategic 

applications, needs to be speeded up [Kel 05]. Despite the fact that 

implementing such applications on general-purpose scalar computers is easier, 

but, in addition to be slow, it has other drawbacks such as memory restriction, 

single feed-in/feed-out (Input/output (I/O) port) and other peripheral devices 

limitations. The optimum and most satisfactory solutions to these problems can 

be achieved through using parallel or distributed computing systems [Kel 05, 

Bra 01, and Man 06].  
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Parallel Computing is the simultaneous use of multiple computing resources to 

solve a computational problem. To conduct parallel computing, the computing 

resources can include a single computer with multiple processors (Parallel 

Processing), or an arbitrary number of computers connected by a network or a 

combination of both (Distributed Processing). The key benefit of parallel and 

distributed computing is to solve large and complex problems fast. Other 

benefits include: taking advantage of non-local resources to overcome memory 

constraints of a single computer, cost savings by using multiple "cheap" 

computing resources.  

Since, this thesis is concerned with the implementation of image processing 

applications on distributed system architectures; in particular, a LAN-based 

distributed processing system, this chapter is devoted to explain how 

parallelism can be introduced into computer systems, provide an introduction 

to the different computer architectures and classifications, and the parallel 

methodologies that have developed to efficiently utilize the computing power of 

such advanced computing systems. 

1.2. Methods of Introducing Parallelism 

Parallelism in various forms appeared in computers produced during the 1960s, 

and proved to be an efficient approach. Nevertheless, greater parallelism needs 

to be introduced into the design of computing systems because improvement 

in circuit speed alone cannot produce the required performance. The 

parallelism was limited by the cost of logic units, so that the computer was 

substantially serial with only moderate capability to support parallel operation. 

As the cost of components decreased drastically in the last two decades, 

computer design has become more and more complex to achieve higher 

computation speed. By the end of 1960s and the beginning of 1970s several 

projects were undertaking for the development of truly parallel computers [Gra 

02]. 
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The principal way of introducing parallelism into the architecture of computers 

can be summarized as follows [Gra 02, Ste 06]: 

(1) Pipelining: The application of assembly-line techniques to improve the 

performance of an arithmetic or control unit. 

(2) Functional: Providing several independent units for performing 

different functions, such as: logic, addition or multiplication, and 

allowing these to operate simultaneously on different data. 

(3) Array: Providing an array of identical processing elements (PE) under 

common control, all performing the same operation simultaneously 

(i.e., lockstep mode) but on different data stored in the private 

memories. 

(4) Multiprocessing: The provision of several processors, each obeying its 

own instructions on different data, either stored locally or in a common 

memory. 

Of course, individual designs may combine some or all of these parallel 

features. For example processor array may have pipelined arithmetic units as 

its PEs, and one functional unit in a multi-unit computer might be a processor 

array.  

History shows that parallelism has been used to improve the effectiveness of 

computers since the earliest designs, and that it has been applied at several 

distinct levels which might be classified as [Hoc 88]: 

(1) Job level (between jobs or between phases of a job). 

(2) Program level (between parts of a program or within DO LOOPs). 

(3) Instruction level (between phases of instruction execution). 

(4) Arithmetic and bit level (between elements of a vector or matrix or 

within arithmetic logic circuits. 
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The main requirement of computer architectures in allowing parallelism at the 

job level is to provide a correctly balanced set of replicating resources, which 

comes under the general classification of functional parallelism, applied overall 

the computer installation. In this respect, it is important for the level of activity 

to be monitored well in all parts of the installation, so that bottle-necks can be 

identified, and resources added or removed as circumstances demand. 

The types of parallelism that arise during the execution of a program also need 

to be carefully considered. Within such a program there may be sections of 

code that are quite independent of each other and could be executed in parallel 

on different processors in a multiprocessor environment (e.g., a set of linked 

processors). Some sections of independent code could be recognized from a 

logical analysis of the source code, but others will be data dependent and 

therefore not known until the program is executed.  

In another case, different executions of a loop may be independent of each 

other, even through different routes are taken through the conditional 

statements contained in the loop. In this case, each microprocessor can be 

given the full code, and as many passes through the loop can be performed in 

parallel as there are microprocessors. This situation has important applications 

in many areas of science and engineering. 

1.3. Classes of Computer Systems 

There is wide variety of different computer systems, in particular multiple 

processing systems, have developed through the years. In order to provide a 

general framework for understanding these different types it is important to be 

able to order them into some kinds of taxonomy. Ideally, this classification 

scheme should present a methodology for the decomposition of any processing 

system, such that all the differences and similarities between configurations are 

indicated. It would be advantageous if such taxonomy could be developed to 

bring out the diversity in different system designs. The difficulty is choosing the 

minimum amount of information characterizing the computer system that should 

be incorporated into the classification scheme.  
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Many schemes have been proposed for characterizing the various parallel and 

quasi-parallel computing systems in existence. Computer systems may be 

classified according to one of the following principles: 

(1) Hardware-based classification scheme 

(2) Instruction and data streams-based classification scheme (Flynn 

taxonomy) 

In what follows a brief description is given for each of the above classification 

schemes. However, further details can be found in related literatures, such as: 

[Bau 02, Kel 05, and Rao 06]. 

(1) Hardware-based classification scheme 

According to this classification scheme, i.e., the architecture of the hardware; 

three principle types of computer architecture emerged, these are [Kel 05]: 

i.    Pipeline (vector) computers.  

ii. Array (synchronous) processors. 

iii. Multiprocessor (asynchronous) systems.  

Discussion of the above types of computer architecture is beyond the scope of 

this thesis.  

(2) Instruction and data streams-based classification scheme 

Computer systems may be usefully further classified according to how the 

machine conveys its instructions to the data being processed. This scheme was 

first proposed by Flynn [Fly 72]. In the approach taken by Flynn “instruction 

stream” and “data stream” are divided into two types, namely, single or multiple. 

The term stream is used to denote a sequence of items (instruction or data) as 

they are executed, or operated upon, by single processor. An instruction stream 

is a sequence of instructions executed by the machine, whereas the data 

stream is a sequence of data, including input or partial or temporarily results 

called for by the instruction stream.  
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Four classes of processing systems can be identified, according to whether the 

instruction or data streams are single or multiple, these are: 

(i)  SISD (Single Instruction stream, Single Data stream) 

(ii)  SIMD (Single Instruction stream, Multiple Data stream) 

(iii)  MISD (Multiple Instruction stream, Single Data stream) 

(iv)  MIMD (Multiple Instruction stream, Multiple Data stream) 

In what follows a brief description is given for each of the above classes. 

However, further details can be found in related literatures, such as: [Kel 05, 

Caa 05, and Man 06]. 

(i) SISD (Single Instruction stream, Single Data stream) 

This is the conventional (i.e., serial) von Neumann computer [Wac 05] in which 

there is one stream of instructions (therefore, in practice, all one instruction 

processing unit) and each are arithmetic instruction initiates one arithmetic 

operation, leading to a single data stream of logically related arguments and 

results. It is irrelevant whether pipelining is used to speed up the processing of 

instructions or the arithmetic. 

(ii) SIMD (Single Instruction stream, Multiple Data stream) 

The SIMD category is further subdivided into vector (pipelined) and parallel 

(array or synchronous processors). For example, a vector processor is defined 

as SIMD processor, since a single vector instruction will operate on a vector (or 

vectors) of data to yield a result vector. Vector architecture is characterized by 

arithmetic units which are designed like automobile assembly; the units are 

segmented to perform smaller tasks, each of which may take a relatively small 

amount of time to complete [Kel 05].  

Although, the overall time for the totals task (e.g., multiplication) may exceed 

the time for a conventional (scalar) arithmetic unit to perform the same function, 

the segmented arithmetic unit can accept vectors of operands, which stream 
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 through the unit in a lockstep fashion. This makes the overall operation, for 

example, processing a vector of 64 elements, faster as compared to a loop of 

64 performed by a scalar machine. 

The synchronous array processors are classified as SIMD, because all CPUs 

operate in lockstep mode, obeying a single instruction, taken from the Master 

Control Unit (MCU), with perhaps different data. Thus, we need to differentiate 

between SIMD vector and SIMD parallel. This distinction is important not only 

from an architectural standpoint, but also from a functional standpoint, since 

these two classes have important similarities, which might be exploitable by 

algorithms developer. 

(iii) MISD (Multiple Instruction stream, Single Data stream) 

Instead of parallelism in the data stream, it is conceivably possible to have 

parallelism in the instruction stream. This provided by a class of computers with 

MISD architecture. In this case, each operand operated upon simultaneously 

by several instructions. This mode of operation is generally unrealistic for 

parallel computers, therefore, at the present time, there is no practical machine 

having this type of architecture [Wac 05]. 

(iv) MIMD (Multiple Instruction stream, Multiple Data stream) 

This is a general-purpose high performance computing systems, which uses 

multiple processing units to execute multiple instructions on multiple data, both 

independently and concurrently. Concurrency is a high level, or global, form of 

parallelism that denotes the independent operation of a collection of 

simultaneous computing activities, rather than the lockstep connection that 

exits in SIMD systems. 

Concurrency is essentially an interactive parallelism that allows the 

asynchronous operation of processors in a system. Example of such 

architecture are provided by the data flow machine, the N-Cube processor, 

transputer-based Meiko Computing Surface, the ESPIRIT supernode machine, 

CRAY-XMP, IBM-3090, etc.   
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MIMD computer systems are different in that they consist of several 

interconnected processing units, memory, and I/O units. This leads to a sub-

classification scheme for MIMD processors, which is based on memory 

structure. In this respect, as shown in Figure (1.1), we have two classes, these 

are: 

(a) Shared memory (tightly-coupled) architecture, in which the memory is 

shared by all processors, where all memory is equally accessible to all 

processors. 

(b) Distributed memory (loosely-coupled) architecture, in which each 

processor has its own private memory, which other processors cannot 

access directly. 

 

Figure (1.1). MIMD memory-based sub-classification scheme: (a) Shared 

memory (tightly-coupled) architecture. (b) Distributed memory (loosely-

coupled) architecture. 

Shared memory processors tend to be more expensive due to the need to have 

an expensive bus or complex switching network to allow all processors access 

to all memory. The shared memory approach provides fast interprocessor 

communication but is limited by the speed at which the shared memory can 

operate as the number of processors increases. With current technology, cost-

effective shared memory systems tends to saturate at a relatively small number 

of processors and the addition of further processing units has limited effect on 

overall system performance.   

Shared 

memory CPU 

I/O 

CPU 

I/O 

(a) 

CPU 

I/O 

CPU 

I/O 

Local 

memory 

Local 

memory 

Communication 

link 

(b) 
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Distributed memory systems do not suffer from an asymptotically approached 

limited to their ultimate performance. However, one must then supply 

communication channels between processors, since it is likely that processors 

will need to communicate data during parallel computation. In such systems, 

interprocessor communication is based on “message-passing” via dedicated 

communication channels. It is termed message-passing since the way in which 

processor access the memory in processor B is via a message to B, asking B 

to send the appropriate data. 

Thus, distributed memory and message passing are nearly synchronous terms, 

at least in current designs. This is turning out to be a crucial issue, due to the 

relatively slow interprocessor communication speeds for a distribute memory 

processor, compared to shared memory processor systems. Also, such 

systems need to provide an additional channel for each added processor, so 

that the system total communication performance is increased along with its 

processing performance. However, there is no inherent limit to the ultimate 

performance achievable with such computer systems. Furthermore, this 

approach makes it feasible to use a very large number of simple and 

comparatively cheap to manufacture processing units.  

1.4. Computer Networks and Distributed Processing 

Computer networks are defined as a number of independent digital processing 

devices (e.g., computers, microprocessor-based devices, personal digital 

adapters (PDAs), mobile phones, or any digital devices with compatible 

communication capabilities) that are connected together using wire or wireless 

data communication links [Tan 03]. Typically, each device, which also refers to 

them as a node, has its own central processing unit (CPU), memory, and I/O 

unit.  

From parallel or distributed architectural point of view, and according to the 

discussion in Section 1.3, computer networks can be classified as distributed 

memory MIMD computer systems. There are many criteria that are used to 

classify computer networks. One widely used criterion for classifying computer 
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 networks is their scale (distance), i.e., their physical size. Distance is important 

as a classification metric because it imposes different signal propagation media, 

modulation techniques, protocols to be used at different scales. Accordingly, 

computer networks can be classified as [Tan 03]: 

(1) Personal Area Network (PAN) 

(2) Local Area Network (LAN) 

(3) Metropolitan Area Network (MAN) 

(4) Wide Area Network (WAN) 

(5) International Network (Internet) 

Figure (1.2) shows the distance associated with each of the above classes. 

Discussion of the different classification criteria and the different distance-

based classes of computer networks are beyond the scope of this thesis.  In 

this work, we concern with using a LAN as a distributed memory MIMD 

computer system to speedup image processing computations, and evaluate the 

performance of such system. 

Interprocesso
r distance 

Processors  

located in the 
same 

Example 

 

1 m Square meter  Personal Area Network (PAN) 

10 m Room 

 Local Area Network (LAN) 100 m Building 

1 km Campus 

10 km City  Metropolitan Area Network (MAN) 

100 km Country  
 Wide Area Network (WAN) 

1000 km Continent  

10,000 km Planet   The Internet 
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Figure (1.2). Classes of computer networks according to devices separation 

distance [Tan 03]. 

1.5. LAN-Based Distributed Systems 

During the last four decades, there has been an impressive gain in computer 

performance, in terms of speed and memory. Not only due to advances in 

technology, but also due to innovations in computer architectures, so that a 

number of high performance supercomputing systems or parallel computers is 

emerged. In practice, a number of parallel computers have been designed, 

developed, and commissioned, such as: the CRAY series, the Cyber machines, 

the Convex machines, US-connection machine, AMT DAP series, transputer-

based Meiko Computing Surface, etc. However, running such machines are 

very costly, in terms of initial capital cost, running cost, hardware and software 

maintenance, etc.     

Other efficient parallel computer systems are the application specific hardware 

implementation, which offer much greater speed than a software 

implementation and some types of parallel computers. With advances in the 

VLSI (Very Large Scale Integrated) technology, hardware implementation has 

become an attractive alternative. Implementing complex computation tasks on 

hardware and by exploiting parallelism and pipelining in algorithms yield 

significant reduction in execution times. But, using such types of parallel 

computers or dedicated hardware are not always cost-effective, and can not be 

provided for all our needs. 

The use of heterogeneous collections of computing systems interconnected by 

one or more networks as a single logical computational resource has become 

a wide-spread approach to high-performance parallel computing. As an 

example of such cost-effective computing systems is the LAN-based computer 

system. The LAN-based parallel computer systems allow individual applications 

to harness the aggregate power of the increasingly powerful, well-networked, 

heterogeneous, and often largely under-utilized collections of resources 

available to many users [Fer 98].   
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1.6. Data Communication Libraries for LAN-Based 

Systems 

In order to be able to efficiently and effectively use LAN-based systems to 

perform parallel (distributed) computations, it is important to have an adequate 

and a reliable distributed program development toolset, which can support the 

programming of multiprocessors application using familiar development 

environments and standard languages.  

Numerous software systems that have been developed to support some form 

of network parallel computing, the majority of them are based on a small set of 

popular packages that provide an explicit message-passing for distributed 

memory MIMD computer systems, such as the Parallel Virtual Machine (PVM), 

and the Message Passing Interface (MPI). These software systems support 

simple, portable library interfaces for typical high-performance computing 

languages such as C and FORTRAN [Lee 99, Fer 98]. 

The PVM provides the programmer with library routines to perform task 

creation, data marshalling, and asynchronous message passing. In addition, 

the PVM provides tools for specifying and managing a collection of hosts on 

which applications will be executed. 

More recently, a new toolset based on Java language is developed; therefore, 

it is called Java Parallel Virtual Machine (JPVM). This is because Java provides 

a number of features that appear to be promising tools for addressing some of 

the inherent problems associated with network parallel programming. For 

example, Java provides a portable uniform interface to threads. Using threads 

instead of traditional heavyweight processes has been found to be an avenue 

for increasing latency tolerance and allowing finer-grained computations to 

achieve good performance in distributed memory parallel processing 

environments. Java supports a high degree of code portability and a uniform 

API for operating system services such as network communications [Fer 98]. 

  



www.manaraa.com

13 

 

The JPVM library supports an interface similar to the C and FORTRAN 

interfaces provided by the PVM system, but with syntax and semantics 

enhancements afforded by Java and better matched to Java programming 

styles. The similarity between JPVM and the widely used PVM system supports 

a quick learning curve for experienced PVM programmers, thus making the 

JPVM system an accessible, low-investment target for migrating parallel 

applications to the Java platform. At the same time, the JPVM offers novel 

features not found in standard PVM such as thread safety, multiple 

communication end-points per task, and default-case direct message routing.  

The JPVM is implemented entirely in Java, and is thus highly portable among 

platforms supporting some version of the Java Virtual Machine (JVM). This 

feature opens up the possibility of utilizing resources commonly excluded from 

network parallel computing systems such as Macintosh and Windows-NT 

based systems [Fer 98]. 

1.7. Methodologies for Distributed Programming   

Distributed programming is the design, implementation, and tuning of 

distributed computer programs to take advantage of distributed computing 

systems. Distributed programming focuses on partitioning the overall problem 

into separate tasks (processes and data), allocating tasks to processors and 

synchronizing the tasks to get meaningful results. Distributed programming can 

only be applied efficiently to problems that are inherently distributable, mostly 

without data dependence. 

There are two major approaches to distributed programming: implicit, where the 

system (the compiler or some other program) partitions the problem and 

allocates tasks to processors automatically; or explicit, where the programmer 

must themselves suggest and implement the partitioning method for the 

problem [Sil 99]. 

For most applications, there are three common broad models, which may be 

considered in modelling physical systems on distributed memory MIMD 

computer systems [Sil 99]. The strategies are:  
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(1) Arithmetic or algebraic model  

(2) Geometric model 

(3) Event or processor-farm model 

(1) Arithmetic or algebraic model 

Here the whole algorithm is split into a number of sections, each of which is 

assigned to one processor, but data relating the whole system flows through 

each processor like a production line. Thus, elaborate communication is 

required in transferring the data from one processor to another. 

(2) Geometric model 

In this model, each processor executes more or less the same program but 

here the data is distributed in a manner which requires extensive 

communication between the processors, for example, each processor might be 

used to simulate one part or more of a large system of similar objects interacting 

with each other.  

 (3) Event or processor-farm model 

This may be considered as the simplest model in which each processor 

executes the same program independently from all other processors, each 

operates on a different part of the total data. Therefore, this model is mostly 

suitable for applications where the same process has to be applied to a number 

of independent data sets. 

The processor-farm model is very simple since it allows exactly the same serial 

program to be implemented, assuming that enough memory is available to 

accommodate the whole program on each processor. In addition, the farming 

strategy is the most efficient model which can be used in concurrently running 

image processing applications. This is because, by using this strategy, no 

interprocessor communication is required other than that involved in forwarding 

data/results to and from the processors, once for all at the beginning and the 

end of the computation.  



www.manaraa.com

15 

 

1.8. Statement of the Problem  

It has been well recognized that distributed computations are the most efficient 

solution to speedup the resource (processing time and memory) demanding 

image processing applications. LAN-based computer systems, which can be 

classified as distributed MIMD (loosely-coupled) computer systems, are 

considered as the most cost-effective systems. However, the performance of 

such systems depends on the parallel methodology that is used in 

implementing the application on the distributed machine.  

The main objective of this work is to develop and evaluate the performance of 

a distributed image processing (DIP) model that utilizes a LAN-Based computer 

system. The DIP model is implemented to speedup the extensive image 

processing computations of noise reduction (median filters based on 

convolution function) and edge detection (Sobel algorithm) in distorted, 

continuously feed-in, images. 

The objectives of this work can be summarized as follows: 

(1) Develop a serial research level code for edge detection in distorted 

images using Sobel algorithm. In order to increase the edge detection 

accuracy of the algorithm, the input images are pre-processed for noise 

reduction or removal (image enhancement) using median filter, which 

is based on convolution function of different sizes (e.g., 3x3 and 5x5).  

(2) Develop a DIP model, which is based on the processor-farm 

methodology, in which each processor executes the same program 

independently from all other processors, each operates on a different 

part of the total data.  

(3) Develop a distributed or parallel version of the code to accommodate 

the processor-farm parallel methodology to run the code efficiently on 

a LAN-based system using the JPVM as parallel environment.   
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(4) Evaluate speedup factor, parallelization efficiency, and image 

processing rate achieved by the DIP model over LAN-based system 

consisting for the pre-described image processing application. 

(5) Investigate the effect of number of parameters, such as: number of 

PCs forming the system, number of images allocated to each PC, size 

of image, size of convolution function (3x3, 5x5), on the system 

performance.  

(6) Demonstrate how to estimate, for certain problem size, the optimum 

number of processors that can be used.  

1.9.Organization of the thesis 

This chapter presents an introduction to the main topics, objectives, and 

outcome of this thesis. Chapter 2 presents a literature review that summarizes 

the most recent and related work. It is presented in two sections. Section 2.1 

reviews a number of parallel and distributed models for image processing 

applications running on a variety of parallel and distributed system 

architectures. Section 2.2 reviews a number of parallel and distributed models 

running on LAN-based computer systems.  

Chapter 3 provides a detail description of the proposed distributed image 

processing (DIP) model, the parallel programming methodologies in use, and 

the criteria that are used in developing this model. This chapter also describes 

in details the image processing application considered in this thesis, which 

includes the edge detection algorithm, namely, Sobel algorithm, and the noise 

reduction or removal techniques, namely, the median filter that is based on the 

convolution function.   

Chapter 4 is devoted to present some results to evaluate the performance that 

can be achieved over a LAN-based system consisting of n PCs connected 

through an Ethernet 10/100 Mbps switch. The performance is measured in 
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 terms of the speedup factor (S), parallelization efficiency (E), the image 

processing rate ( ). The results obtained are discussed and presented in tables 

and/or graphs as appropriate. Finally, in Chapter 5, conclusions are drawn and 

recommendations for future work are pointed-out. 
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Chapter Two 
Literatures Review 

Image processing applications are time and storage demanding applications, 

therefore, the implementation of image processing applications on parallel and 

distributed computer architectures has been an area of extensive research for 

the last three decades. Consequently, there are a number of techniques that 

have been developed to speedup such time-consuming computations. Most 

models are developed to run efficiently on advanced, dedicated, and expensive 

distributed computer architectures. However, more recently, with the enormous 

advancement in computer networks technology and protocols, many projects 

have been directed towards the implementation of more general-purpose cost-

effective systems, namely, the LAN-Based systems for image processing 

applications.  

In this chapter, we review some of the most recent and related work. This 

chapter is divided into two sections. Section 2.1 reviews number of parallel and 

distributed models for image processing applications on different types of 

parallel computer architectures. Section 2.2 is dedicated for parallel and 

distributed models that run on LAN-Based systems.  

2.1  Parallel and Distributed Models for Image 
Processing Applications   

L. Baumstark and L. Wills [Bau 02] presented a technique for extracting the 

two-dimensional spatial data dependencies from C image filtering source code. 

A key insight gained by looking at the image filtering programs is that extracting 

these spatial data dependencies is the critical and most difficult step; often, the 

core filtering computation that is applied to each neighborhood of pixels can be 

directly transferred over to the data parallel code unchanged. Based on this 

insight, their strategy was to first focus on identifying two-dimensional data 

reference patterns in the source code and later apply different analysis 

techniques (as needed) to the core filtering computation. 
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Baumstark and Wills developed a reverse engineering technique to image 

filtering code from a commercial library originally written for the Texas 

Instruments TMS320C62xx family of digital signal processors. The technique 

was applied to common image filtering algorithms. The results obtained from 

this technique were validated by retargeting to a MATLAB program and 

matching the results against those of the original source. 

H. Fatemi et. al. [Fat 04] presented and evaluated a method for introducing 

parallelism into an image processing application. The method is based on 

algorithmic skeletons for low, medium and high level image processing 

operations. They provided an easy-to-use parallel programming interface. 

Fatemi et. al. approach identified number of skeletons for parallel processing of 

low-level, intermediate-level and high-level image processing operations. Each 

skeleton can be executed on a set of processors. From this set of processors, 

a host processor is selected to split and distribute the image to the other 

processors. The other processors from the set receive a part of the image and 

the image operation which should be applied to it. Then the computation takes 

place and the result is sent back to the host processor. The programmer of the 

application should only select the skeleton from the library and gives the 

appropriate operation as a parameter.  

To evaluate their approach, face recognition was implemented twice on a highly 

parallel processing platform, namely, the IMAP-board, once via skeletons, once 

directly and highly optimized. It was demonstrated that the skeleton approach 

is extremely convenient from a programmer’s point of view, while the 

performance penalty of using skeletons is well below 10% in their case study. 

W. Caarls et. al. [Caa 05] thought that developing embedded parallel image 

processing applications is usually a very hardware-dependent process, 

requiring deep knowledge of the processors used. In addition, image 

processing application consists of number of operations surrounded by control 

flow constructs, and it’s important to run these operations concurrently. For this, 

they designed asynchronous Remote Procedure Call (RPC) system to exploit 
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 low-level image processing operation task-level parallelism to be used for 

algorithmic skeletons. The system was programmed in C language, divided into 

number of image processing operations, and applied these using function calls. 

Caarls et. al. implemented a double threshold edge detection algorithm on a 

prototype architecture consisting of XETAL 16 MHz 320-PE SIMD processor 

and a TriMedia 180 MHz 5-issue VLIW processor. The result showed that the 

overhead of running the RPC system is around 8%, but decreasing processing 

time about 42%. Their result also showed that the system can achieve a 

significant speedup by using SIMD processor for low-level vision processing. 

H. Kelash et. al. [Kel 05] presented parallel processing using multi-agent 

system which can be structured into application interface that allows to call 

particular operators or to pass image processing operation for parallelization. 

In their system, each agent has a very simple behavior which allows it to take 

a decision such as find out an edge, or region, etc., according to its position in 

the image and to the information enclosed in it. The system provides an 

environment for developing and processing image operations within distributed 

system. Data parallelism was implanted in this system, where all Processing 

Elements (PEs) receive commands from a central control processor. The 

system uses the CxC language, and applies Sobel and Laplace operators using 

different data which can be parallelized using array controller of processors 

where one processor associated with one pixel. They compared between their 

multi-agent system and the sequential execution using MATLAB. They found 

that the speedup factor is increasing when using multi-agent system as the size 

of images increases. 

D. V. Rao et. al. [Rao 06] addressed the implementation of image processing 

algorithms such as: image filtering, image smoothing and edge detection on 

Field Programmable Gate Array (FPGA) using Handle-C language which is a 

C-based language that can provide direct implementation of hardware from the 

C-based language description of the system. The design was implemented on 

RC1000-PP Xilinx Vertex-E FPGA based hardware. The results from this 

design used operations for the image processing algorithms on a 256x256 size  
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grayscale of Lena image show that the speed of this FPGA solution for the 

image processing algorithms was approximately 15 times faster than the 

software implementation in C language. 

F. Schurz and D. Fey [Sch 07] presented a parallel processor architecture 

based on small Processing Elements (PEs) in a Field Programmable Gate 

Array (FPGA). Their architecture is able to detect and process multiple 

separated objects simultaneously in image which is divided into partitions and 

handled one by one to keep the whole design small. The architecture is using 

SIMD approach, which means that the same operations are carried out in 

parallel on each image pixel. The PEs in this design are connected through a 

NEWS network and controlled by a central unit. Their design is programmable 

using assembler language. This approach designed to be small and cheap and 

fast possibility for industrial image processing. The results for this design, in a 

VGA resolution approximately one and half million clocks, were used and 66 

images can be processed at 100 MHz, which leads to a performance of 20 

MPixel/s.   

F. Baldacci and P. Desbarats [Bal 08] presented a parallel algorithm for 3D split 

and merge segmentation using topological and structuring with an Oriented 

Boundary Graph image processing. The researchers used multiprocessor 

systems and Non Uniform Memory Access (NUMA) architecture. The algorithm 

was tested in two machines. First machine was equipped with two Intel Xeon 

Quad core at 2,33 GHz, and the other was equipped with eight AMD Opteron 

Dual core at 1,8 GHz with NUMA architecture. They used two medical images 

in test: one image with size 256x256x256 voxels and the other with 

512x512x475 ovxels size. The goal of the approach was to reduce the split and 

merge operations computation time. The results studied the execution time and 

showed that the NUMA architecture was two time slower than the other one, 

and using sixteen threads was slower than using eight threads.   
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2.2 .Parallel and Distributed Models Running on 

LAN-Based Systems  

A. Bevilacqua [Bev 99] introduced a model to obtained efficient load balancing 

for data parallel applications based on dynamic data assignment running on a 

heterogeneous cluster of workstations. The model was referred to the working-

manager model. The aim of the model was to maximize the performance of the 

loosely coupled parallel systems. It is essential to minimize the idle time of each 

process and ensure the balancing of processes workload. 

 The cluster used consists of four workstations, connected to a LAN by a 

100Mbit Ethernet, except for workstation 3, the amounts was 10Mbit adapter. 

The workstations hardware consists of the following: 

 Workstation 1: SMP system: 2 PII 400MHz, 512 MB. 

 Workstation 2: SMP system: 2 PPro 200MHz, 128 MB. 

 Workstation 3: AMD K6-3D, 300MHz, 64 MB. 

 Workstation 4: DEC AXP 4/200, 200MHz, 256 MB.  

The operating system used Linux 2.0 for all workstations except for AXP that 

comes with its native OSF/1, and PVM is the communication library. The gcc 

and the C compiler were used in the model. The results showed that the 

efficiency was over 90%.  

J. A. Gallud et. al. [Gal 99] presented a workbench called Distributed 

Processing Of Remotely Sensed Imagery (DIPORSI). It was developed to 

provide a framework for the distributed processing of Landsat images using a 

cluster of NT workstations connected by Ethernet network using the Message 

Passing Interface (MPI) standard.    

The distributed machine in their model is composed of the 8 P II 333 MHz with 

32 MB of RAM running windows NT Workstation v4.0, and the nodes were 

linked using a 10 Mbps Ethernet. The time in the distributed algorithm was 
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 compared with the time in the sequential algorithm. The results showed that 

the reduction of the execution time in distributed algorithm over 400% for a 

moderate number of nodes. The results also showed that a near linear speedup 

for large image size can be achieved.  

H. S. Bhatt et. al. [Bha 00] developed an environment over a network of 

VAX/AMS and UNIX for distributed image processing. They presented a 

WebDedip, which is redesigned and generalization of Development 

Environment for Distributed Image Processing (DEDIP) to make it more user 

friendly and truly heterogeneous, using Java and web technology. The model 

uses three-tier architecture instead of master-slave one. The WebDedip has 

three tier architecture: GUI, Dedip Server and agents.   

The functionality and efficiency of the WebDedip was tested using Microsoft NT 

as host and IRIS workstations as a slave. IIS 4 was used as a web server and 

the front-end GUI was tested on two most popular browsers IE and Netscape. 

The model was used by 15 scientists for development and operationalization of 

10 distributed image processing applications for Indian Remote Sensing (IRS) 

satellite. The efficiency was as high as 90-95%. The page and applet loading 

time over the network was excluded and the communication delay over the 

network was the additional delay.  

C. Nicolescu and P. Jonker [Nic 02] presented a data and task parallel low-level 

image processing environment for distributed memory system. They designed 

an approach of adding data and task parallelism to an image processing library 

using algorithmic skeletons and the Image Application Task Graph (IATG). In 

their approach, the authors allowed the application to be implemented in a C 

programming environment and allowed the possibility to use and implement 

different scheduling algorithms for obtaining the minimum execution time. 

Nicolescu and Jonker presented a data parallel paradigm with the host/node 

approach for image processing operations where the host processor is selected 

for splitting and distributing the data to the other nodes and the host also 
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 processes a part of the image then each node processes its received part of 

the image and then the host gathers the image back together. The authors use 

a distributed system which consists of a cluster of Pentium Pro/200 MHz PCs 

with 64Mb RAM running Linux, and connected through Myrinet in a three-

dimensional (3D)-mesh topology with dimension order routing.  

The code was written using C and MPI message passing library and the multi-

baseline stereo vision algorithm is an example used in their system. They 

compared the speedup for different image sizes in data parallel approach and 

the speedup of the same application using the data and task parallel approach 

also for different image sizes. The speedup in data and task parallel approach 

was more efficient than the speedup in data parallel approach. 

Z. Qiu et. al. [Qiu 02] developed fast parallel stereo matching parallel algorithm 

on home-based software DSM JIAJIA. A cluster of eight Pentium II PCs 

connected by a 100 Mbps switched Ethernet are using in there design. The 

stereo images were divided into eight parts. Each PC carried out the matching 

task of one parts of stereo image. The results showed that when two PCs were 

used the speedup ratio is 1.8. When four PCs were used, the speedup ratio is 

3.7. When eight PCs were used, the speedup ratio is 7.5. The speedup ratio is 

near the ideal linearity speedup ratio. The speedup of finding corresponding 

points reaches 3200 pair/second, when eight PCs were used. 

J. O’Connell and P. Caccetta [Con 05] presented an algorithm used for time 

series classification of remotely sensed image data which is spatial/temporal 

algorithm. Their approach used homogeneous and heterogeneous clusters of 

computers for reducing computational time using the MPI standard library. 

The parallel algorithm distributes each line of the input probability images to a 

number of slave nodes with I/O performed by one master node. Slave nodes 

then perform the necessary LS processing tasks and send the output back to 

the master. The parallel algorithm implemented on two clusters, an ad hoc 

cluster and the dedicated cluster. The ad hoc cluster used 13 office Wintel 
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 machines. All machines were Pentium 4 between 1.6 GHz and 3.6 GHz and of 

signal dual and quad CPU connected via 100 Mbit Ethernet. The MPICH 

implementation was used in this cluster. The results showed that the efficiency 

in an ad hoc cluster at least 67% in homogenous CPUs, but the efficiency in 

the dedicated cluster was about 86.2% (speedup 7.76) in 9 CPU, and 85.43% 

(speedup 41.86) in 49 CPU.   

A. Clematis et. al. [Cle 06] presented an approach for high performance legacy 

code in a grid-oriented environment. In particular, they presented PIMA(GE)2 

Parallel IMAGE processing GEnova server obtained a legacy code parallel 

library. The parallel server was implemented by using CORBA and integrated 

in Grid architecture. The goal of the approach was reuse of a parallel image 

processing library in a heterogeneous environment obtained a high level of 

flexibility to developed client server image processing applications. 

The approach implemented using a C++/MPI-2 parallel library to be used in 

distributed environment. The application used was the detection of linear 

structure in an image. They authors used a Linux cluster with eight nodes 

interconnected by a Gigabit switched Ethernet, and each node processor was 

a 2.66 GHz Pentium, 512 Mbytes of RAM and two EIDE disks interface in RAID 

0. They compared between library functions and the PIMA(GE)2, and the 

results showed that the variation of the speedup was around 1.3%.     

A. K. Manjunathachari and K. SatyaPrasad [Man 06] designed approach to 

solve the convolution filter by using Simultaneous Multi-Threading (SMT), 

Processing Buffer (PB), and simulated in a standard LAN environment. Their 

approach presented a method to the bifurcation of image processing application 

into three fundamental layers (resource layer, linking layer and application 

layer) which are isolated based on processor requirements and their 

functionality. The parallelism was enhanced by adding the concepts of SMT 

over the processor for redundancy the transition delay in parallel computing 

image processing application. Results showed that for a large number of 

processing units, speedup is close to linear, and also speedup characteristics 

were identical when the same number of templates was used in the matching 

process.   
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The approach used two different implementation methods for parallel image 

convolution. The first method was the direct convolution method which has less 

communication load than the other method, which was 2D Fast Fourier 

Transform (FFT) in a Fourier domain. Direct convolution method’s scalability 

slightly decreased as kernel size got smaller but hardly affected by image size. 

The other method’s scalability decreased as image size got smaller and never 

affected by kernel size. 

A. Plaza et. al. [Pla 06] presented a parallel exploitation-based algorithm for 

onboard data hyperspectral data compression. In their model, three different 

parallel computing platforms were used for demonstration purposes: a Beowulf 

cluster made up of 256 processors at NASA’s Goddard Space Flight Center, a 

heterogeneous network of 16 distributed workstations at University of Maryland, 

and a Xilinx Virtex-II FPGA. 

In their model, they implemented many parallel algorithms such as: parallel 

unsupervised fully constrained least squares (P-UFCLS) algorithm, parallel 

iterative error analysis (P-IEA) algorithm, parallel pixel purity index (P-PPI) 

algorithm, parallel N-FINDR algorithm and parallel algorithm for data 

compression P-FINDR/P-LSU (Linear Spectral Unmixing) compression 

algorithm which was implemented using FPGA hardware. 

The results demonstrated that massively parallel Beowulf clusters and low-cost 

heterogeneous networks of workstations offer an unprecedented opportunity to 

explore methodologies in data mining that looked to be too computationally 

intensive due to the immense volumes of information in remote sensing 

databases. To address the real-time computational requirements introduced by 

many applications, the authors had also developed an FPGA-based algorithm 

for onboard, hyperspectral data compression.  

A. Paz et. al. [Paz 08] developed several parallel algorithms for target detection 

in hyper-spectral imagery. They developed four algorithms for target and 

anomaly detection in hyper-spectral images, these algorithms are: the 
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 Automatic Target Generation Process (ATGP), an Unsupervised Fully-

Constrained Least Squares (UFCLS) algorithm, an Iterative Error Analysis 

(IEA) algorithm, and RX algorithm which developed by Reed and Xiaoli for 

anomaly detection. The problem in these algorithms were computational very 

expensive. The authors solved the computational problem by developed four 

computationally efficient parallel implementations, a parallel ATGP (P-ATGP) 

algorithm, a parallel UFCLS (P-UFCLS) algorithm, a parallel anomaly detector 

(P-RXD) and a parallel MORPHological target detection algorithm (P-MORPH). 

In all algorithms they used a data-driven partition strategy tested on a hyper-

spectral image scene collected by the AVIRIS instrument.        

The full data in the experiment consists of 2133x512 pixels, 224 spectral bands 

and total size about 900 Mbytes. The authors used a single processor of a 

Beowulf cluster with 256 processors called Thunderhead and available at 

NASA’s Goddard Space Flight Center. The results showed that the computation 

time of the parallel algorithms was more efficient of the computation time in 

sequential algorithms. 
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Chapter Three 
The Proposed Distributed Image Processing (DIP) 

Model 

In the last few decades there has been an impressive gain in computer 

performance, due not only to advances in hardware, but also to innovations in 

computer architecture (i.e., how the computer is designed and organized to 

perform its computational tasks) [Gra 02, and Ste 06]. The later reason leads 

to the emergent of extremely fast but expensive computing systems, which are 

recognized as supercomputers or parallel computers. In addition, as it was 

discussed in Chapter 1 that a powerful cost-effective parallel (distributed) 

computing system can be established by utilizing a number of Personal 

Computers (PCs) connected in a Local Area Network (LAN). This is of course 

subject to having an efficient message passing data communication library.  

The performance of a LAN-based computer system depends on a number of 

factors, these include: 

(1) Number of PCs used to perform the computational task concurrently.  

(2) Speed of each individual PC within the network. 

(3) Speed of the communication channels. 

(4) Efficiency of the message passing library. 

(5) Parallel programming model that is used in porting the computational 

task to the parallel system. 

Image processing applications (e.g., edge detection in noisy images) are 

characterized as time consuming and memory demanding applications [Kel 05]. 

Fortunately, for many image processing applications, a LAN-based system can 

provide an efficient and cost-effective solution. 

This chapter presents a description of a distributed image processing (DIP) 

model to speedup image processing computations by efficiently utilizing the 

relatively high computational power of a LAN-based system. The system uses 
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 the professional Java Parallel Virtual Machine (JPVM) for message passing 

between processors. The DIP model is based on the simple processor farm 

methodology that was briefly introduced Chapter 1.  

The rest of chapter is organized as follows. The image processing application 

considered in this thesis is described in Section 3.1. The parallel programming 

methodology, in particular the concept, issues, and features of the event or 

processor-farm model are discussed in Section 3.2. Section 3.3, presents a 

detail description of the proposed DIP model. The main characteristics of data 

communication libraries in use for message passing in LAN-based systems, 

namely the PVM and the JPVM libraries are given in Section 3.4. Section 3.5 

outlines the implementation of the DIP model using the JPVM library. Finally, in 

Section 3.6, the parameters (e.g., speedup factor (S), parallelization efficiency 

(E), and image processing rate ( )) that are used to evaluate the performance 

of the DIP model running on a LAN-based system are defined.     

3.1 Image Processing Application 

Edge detection in noisy images is a typical image processing application. It is 

one of the most important steps in image processing, analysis, and pattern 

recognition system [Civ 04]. Number of techniques have been developed for 

accurate edge detection, such as Canny algorithm, Sobel algorithm, etc. The 

main challenge for accurate and efficient edge detection is the presence of 

noise in images. In order to enhance the performance of such edge detection 

techniques, it is important, first, to reduce or ultimately remove noise from 

images before carrying on the edge detection process.  

This thesis is concerned with the development of image processing application 

that performs edge detection in images distorted with impulsive noise (noisy 

images). Both noise reduction and edge detection algorithms used in this work 

are based on a simple mathematical function, it is the convolution function. 

Therefore, in this section, before proceeding with the description of the image 

processing application, a brief introduction is given for the convolution function.  
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3.1.1. Convolution Function 

Convolution is a simple mathematical operation which is fundamental to many 

common image processing operators. It involves a multiplication of two arrays 

of numbers, generally of different sizes, but of the same dimensionality, to 

produce a third array of numbers of the same dimensionality. It is used in image 

processing to implement operators whose output pixel values are simple linear 

combinations of certain input pixel values. 

In an image processing context, one of the input arrays is normally just a grey 

level image. The second array is usually much smaller, and is also two 

dimensional (although it may be just a single pixel thick), and is known as the 

kernel. The kernel array could be in different size to get different results; the 

kernel may be 3×3 or 5×5 or 7×7 size of neighborhood. If the image has M rows 

and N columns, and the kernel has m rows and n columns then the convolution 

function is written as [Fis 94]: 

    
1 1

( , ) 1, 1 ,
m n

k l

H i j G i k j l K k l
 

          (3.1) 

Where i runs from 1 to M-m+1 and j runs from 1 to N-n+1. The function moves 

the kernel K through the image G pixel by pixel, at each point the overlapping 

pixels in the image and kernel arrays are multiplied and then summed to get 

new value for the pixel. 

Note that many implementations of convolution produce a larger output image 

than this because they relax the constraint that the kernel can only be moved 

to positions where it fits entirely within the image. Instead, these 

implementations typically slide the kernel to all positions where just the top left 

corner of the kernel is within the image. Therefore the kernel overlaps the image 

on the bottom and right edges. One advantage of this approach is that the 

output image is the same size as the input image. Unfortunately, in order to 

calculate the output pixel values for the bottom and right edges of the image, it 

is necessary to invent input pixel values for places where the kernel extends off 

the end of the image.   
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Typically, pixel values of zero are chosen for regions outside the true image, 

but this can often distort the output image at these places. Therefore in general 

if you are using a convolution implementation that does this, it is better to clip 

the image to remove these spurious regions. Removing n-1 pixels from the right 

hand side and m-1 pixels from the bottom will fix things.  

Convolution filter is a very complex operation that requires huge computation 

power. To calculate a pixel for a given kernel or mask of 3x3 there are 9 

multiplications per image pixel, if the input image is 1024×1024 and the kernel 

is 3×3 the convolution filter need about 9 million multiplications to apply this 

filter in image, for this convolution filter is very slow algorithm and take long time 

to execution. Figure (3.1) shows how to apply the convolution function for 3×3 

mask on an input image with M height and N width. 

 

Figure (3.1) – Applying the convolution function. 

3.1.2 .Edge Detection 

Edge detection is the most important process in image processing, which is 

used in analysis and pattern recognition systems. Its importance arises from 
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 the fact that edges often provide an indication of the physical extent of objects 

within the image. The result of edge detection is edge map that contains 

important information about the objects in image [Civ 04]. 

Edge detection techniques 

There are different techniques that can be used efficiently for edge detection. 

These techniques can be grouped into two main categories; these are [Mai 06, 

Civ 04]: 

 Gradient edge detection: detects the edges by looking for the maximum 

and minimum in the first derivative of the image. This technique 

sometimes known as search-based methods. 

 Laplacian edge detection: Known as zero-crossing based methods. This 

method searches for zero-crossings in the second derivative of the 

image in order to find edges.  

In what follows, a brief description is given for the most widely used techniques, 

namely, the Canny and Sobel edge detection techniques as an example of 

gradient edge detection techniques and the Laplacian edge detection technique 

as an example indicated by its name. 

(1) Canny edge detection technique 

The Canny edge detection is kind of gradient edge detection. It could be 

considered as a standard method and it is used in many researches, because 

it provides very sharp and thin edges. Canny edge detection works in a multi-

stage process, uses linear filtering with a Gaussian kernel to smooth noise and 

then computes the edge strength and direction for each pixel in the smoothed 

image [Roa 06]. 

(2) Sobel edge detection technique 

The Sobel operator is one of the most commonly used edge detectors. Sobel 

operator performs a 2-D spatial gradient measurement on an image.  
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The operator consists of a pair of nxn convolution kernels, one estimating the 

gradient in the columns and the other estimating the gradient in the rows. It has 

one disadvantage which is a slower method than other edge detection 

operators because its use convolution function which is time consuming.  

In this work, the Sobel edge detection technique is used for edge detection in 

noisy images. Figure (3.2) shows the results obtained from applying the Sobel 

edge detection techniques for the Standard Lena image. 

              
                          (a)                                                                       (b) 

Figure (3.2) – Sobel edge detection. (a) Original image. (b) Sobel edge 

detection. 

The Sobel operator is one of the most commonly used edge detectors [Wil 99]. 

It performs a two-dimensional (2-D) spatial gradient measurement on an image. 

The operator consists of a pair of 3×3 convolution kernels, one estimating the 

gradient in the columns (vertical) and the other estimating the gradient in the 

rows (horizontal) as show in Figure (3.3). The Sobel operator has one 

disadvantage which is a slower method than other edge detection operators 

because it uses convolution function which is time consuming [Fis 03].  

  

http://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
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Figure (3.3): Soble operators (Gx: vertical direction and Gy: horizontal 

direction). 

The two operators can be combined together to find the absolute magnitude of 

the gradient in edge at each point and the orientation of that gradient. The 

gradient magnitude is given by [Fis 03]:  

2 2

x yG G G           (3.2) 

1tan
y

x

G

G
   
  

 
       (3.3) 

Where Gx is the gradient in the vertical direction, Gy is the gradient in the 

horizontal direction, |G| is the absolute magnitude of the gradient, and  is the 

orientation of the gradient. 

(3) Laplacian edge detection technique 

The Laplace local image operator is one of the simplest edge detection 

algorithms in the field of image processing. An edge is made visible by using a 

neighbor’s pixel value to suppress its own one [Kel 05]. 

  



www.manaraa.com

35 

 

3.1.3.Noise Reduction 

Two dimensions convolution filter is usually used in edge detection and noise 

reduction applications. There are many filters used convolution function to 

remove the noise in image, such as, mean filter, median filter and Gaussian 

filter. The most common filters that are used for noise reduction are [Met 00]:  

(1)  Mean filter 

(2)  Median filter.  

They both use convolution function for noise reduction in images, like Gaussian 

noise and impulse noise. 

(1) Mean filter 

Mean filter or average filter is the simplest linear spatial filter that is used for 

noise reduction in images. This is a low pass filter, which removes high spatial 

frequencies from an image and is also good at reducing Gaussian noise present 

in an image.  Mean filter works by replacing each pixel value in an image with 

the mean or average value of the neighbors of the pixel and the pixel itself. 

Mean filter use convolution function with usually 3×3 kernel which the size of 

the neighborhoods. The mean filters are good at removing Gaussian noise but 

this type of filter blur the edges in the image [Met 00].  

(2) Median filter 

Median filter is a non-linear spatial filter. The median filter is calculated by 

sorting all the pixel values from the surrounding neighborhood into numerical 

order and then setting the center pixel to the middle pixel value. A median filter 

is a very effective in removing impulse noise in images and it also does a better 

job than the mean filter at preserving edges within an image. Median filter is 

very widely used in image and video processing applications [Met 00].  
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The median filter has two main advantages over the mean filter [Fis 94]: 

i. The median is a more robust average than the mean and so a single 

very unrepresentative pixel in a neighborhood will not affect the median 

value significantly.  

ii. The median value must actually be the value of one of the pixels in the 

neighborhood; the median filter does not create new unrealistic pixel 

values when the filter straddles an edge. For this reason the median filter 

is much better at preserving sharp edges than the mean filter. 

The main problem of the median filter is its high computational cost, because 

sorting p pixels the time complexity is O(p log p) [Roa 06]. However, in this work 

the median filter with convolution operator will be used for noise reduction in 

images. Figure (3.4) shows the example of median filter with mask of 3×3 of 

size of neighborhood pixels.      

 

Figure (3.4) - Median filter. 

3.1.4.Noise in Digital Images 

Real world signals usually contain departures from the ideal signal that would 

be produced by the model of the signal production process. Such departures 

are referred to as noise. Noise arises as a result of unmodeled or unmodelable 

processes during the production and capture of the real signal. It is not part of 
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 the ideal signal and may be caused by a wide range of sources, e.g. variations 

in the detector sensitivity, environmental variations, the discrete nature of 

radiation, transmission or quantization errors, etc. It is also possible to treat 

irrelevant scene details as if they are image noise (e.g. surface reflectance 

textures). The characteristics of noise depend on its source or on the noise 

production operator [Mai 06].  

Many image processing packages contain operators to artificially add noise to 

an image. Deliberately corrupting an image with noise allows us to test the 

resistance of an image processing operator to noise and assess the 

performance of various noise filters [Gon 02].  

Noise can generally be grouped into two classes:  

 Image independent noise.  

 Image dependent noise. 

Image independent noise can often be described by an additive noise model, 

where the recorded image g(i,j) is the sum of the true image s(i,j) and the noise 

(i,j):  

 ( , ) ( , ) ( , )g i j s i j i j        (3.4) 

The noise (i,j) is often zero-mean and described by its variance 2

n . The 

impact of the noise on the image is often described by the Signal-to-Noise Ratio 

(SNR):  

 
2

2
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 

 
          (3.5) 

Where 2

s  and 2

f  are the variances of the true and the recorded images, 

respectively.  

In many cases, additive noise is evenly distributed over the frequency domain 

(i.e. white noise), whereas an image contains mostly low frequency information. 
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 Hence, the noise is dominant for high frequencies and its effects can be 

reduced using some kind of low-pass filter. This can be done either with a 

frequency filter or with a spatial filter. Often a spatial filter is preferable, as it is 

computationally less expensive than a frequency filter.  

In the second case of image data-dependent noise (e.g., arising when 

monochromatic radiation is scattered from a surface whose roughness is of the 

order of a wavelength, causing wave interference which results in image 

speckle), it is possible to model noise with a multiplicative or non-linear model. 

These models are mathematically more complicated; hence, if possible, the 

noise is assumed to be data independent.  

Noise detector  

One kind of noise which occurs in all recorded images to a certain extent is 

detector noise. This kind of noise is due to the discrete nature of radiation, i.e. 

the fact that each imaging system is recording an image by counting photons. 

Allowing some assumptions (which are valid for many applications) this noise 

can be modelled with an independent, additive model, where the noise (i,j) 

has a zero-mean Gaussian distribution described by its standard deviation 

( 2

n ), or variance. This means that each pixel in the noisy image is the sum of 

the true pixel value and a random Gaussian distributed noise value 

Types of noise 

There are many common types of noise in image, such as [Gon 02]:  

(1)  Gaussian noise. 

(2)  Impulse noise. 

(1) Gaussian noise 

Gaussian noise is also known as additive noise or Gaussian additive noise. It 

is usually introduced during image acquisition. An amount of noise is added to 

every part of the image. Each pixel in the image will be changed from its original 

  

http://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm
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 value. Additive Gaussian noise is characterized by adding to each image pixel 

a value from a zero-mean Gaussian distribution, this means that each pixel in 

the noisy image is the sum of the true pixel value and a random, Gaussian 

distributed noise value [Mai 06].  The Gaussian noise can be removed using 

mean filter usually with 3x3 mask, but mean filter blur the edges and details in 

images.  

(2)  Impulse noise 

Impulse noise (salt and pepper noise) is a special type of noise caused by errors 

in data transmission, acquisition, in processing in images. The corrupted pixels 

are either set to the maximum values, which show as a snow in image, or the 

single pixels set to zero value, giving the image a salt and pepper like 

appearance [Mai 06]. Impulse noise also known as random noise or 

independent noise defining characteristic is that the color of a noisy pixel bears 

no relation to the color of surrounding pixels. Figure (3.5) shows the effect of 

impulse noise in color images. Nonlinear filter such as median filter is the most 

common filter used to reduce the impulse noise in images as shown in Figure 

(3.6). 

            

 

                              (a)                                                                        (b) 

Figure (3.5) – Impulse noise. (a) Original image. (b) Add impulse noise to 

image [Mat 04].  
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                                 (a)                                                                      (b) 

Figure (3.6) –Reduction impulse noise.  (a) Image corrupted by impulse noise. 

(b) Noise reduction using median filter with 3×3 sizes of neighborhoods of 

pixels.   

3.2 .Parallel Programming Methodologies   

Chapter 1 discussed three different explicit distributed (i.e., parallel) 

programming methodologies, theses are: 

(4) Arithmetic or algebraic model  

(5) Geometric model 

(6) Event or processor-farm model 

This work utilizes the third model, the event or processor-farm model, to 

develop an efficient distributed image processing model. The concept, issues, 

and features of this model are discussed below. 

3.2.1 .Processor Farm Parallelism 

One paradigm that is commonly used on multiprocessors is the processor-farm 

paradigm, in which each processor executes almost the same program 

independently from all other processors, each operates on a different part of  
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the total data [Wag 97]. The processor-farm (also called task-farming or master-

slave) paradigm consists of two entities: master and multiple slaves. The 

master is responsible for decomposing the problem into small tasks (and 

distributes these tasks among a farm of slave processes), as well as for 

gathering the partial results, which is run independently, in order to produce the 

final result of the computation. The slave processes execute in a very simple 

cycle: get a message with the task, process the task, and send the result to the 

master. Therefore, the communication takes place only between the master 

and the slaves, and by using this strategy, no interprocessor communication is 

required other than that involved in forwarding data/results to and from the 

processors, once for all at the beginning and the end of the computation  [Hey 

00]. 

The idea of a process farm is that a master process can compute the sequential 

portions of the code independently, and then spawn slave processes when it is 

time to do the parallel sections of code. This has the benefit that the 

parallelizable and sequential portions of code can be completely separated 

[Sac 03]. 

Accordingly, this paradigm can achieve high computational speedups and an 

interesting degree of scalability. However, for a large number of processors the 

centralized control of the master process can become a bottleneck to the 

applications. It is, however, possible to enhance the scalability of the paradigm 

by extending the single master to a set of masters, each of them controlling a 

different group of process slaves. 

For applications, such as image processing, where the same computations 

have to be applied to a number of independent data sets, the processor-farm 

model is becoming as the most suitable model. This is because it allows exactly 

the same serial program to be implemented, assuming that enough memory is 

available to accommodate the whole program, on each processor.  
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3.3. The Proposed Distributes Image Processing (DIP) 

Model  

The image processing application described in Section 3.1 can be used 

efficiently for edge detection in noisy images. But the algorithms used in this 

applications (median filter for noise reduction and Sobel algorithm for edge 

detection) are considered as time consuming application. This is because both 

the median filter and Sobel algorithm are based on the time-consuming 

convolution function for noise reduction and edge detection. This is especially 

true when the kernel size in convolution function is increased. To overcome this 

issue, this thesis is devoted to utilize the potential computing power of LAN-

based systems. Consequently, to exploit the computing power of such systems, 

an efficient distribution or parallelization model is needed. 

This section presents a description of a distributed image processing model. It 

is referred to as the DIP model. It is proposed to speedup the time consuming 

image processing computation described above, and also to run efficiently on 

a LAN-based computing system that utilizes the JPVM as a parallel 

environment and data communication library for message passing. 

The parallel methodology that is going to be used in transferring (parallelizing) 

the serial computation is based on the processor-farm strategy. In which the 

modified (parallelized) version of the code is developed in two versions, one 

version is developed to run as a master (server), and the other version is to run 

as a slave (client). More than one slave is usually loaded and run concurrently 

on different processor performing its calculation on different data (images), i.e., 

in MIMD architecture. This form of paradigm involves no inter-processor 

communication and slaves are only allowed to communicate with the master. 

The relationship between the master-slave is summarized as follows: 

(i) The master reads-in the input data (images) and perform any require 

preliminary computations. 
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(ii) Send the data to the appropriate slave. 

(iii) After completion of the computations, the slave sends the output 

results back to the master processor. 

(iv) The master processor performs any post-processing computations 

and then presents the final outputs.   

It is clear from the above relationship that the master processor is idle while 

waiting for the slaves to complete their computations. Therefore, in order to 

utilize the master processor to perform some useful computations, instead of 

being idle while waiting, it is used to run as a slave. However, since the master-

processor starts performing its computation after sending all data to all slaves 

(after all slaves start), then it is expected that all of them will finish first, and they 

have to wait until the master complete its computations before sending their 

results back to the master. In order to avoid this conflict, the size of the task 

assigned to the master should be less, so that it can finish before the slaves 

complete their computations, and be ready to receive their results. 

Figure (3.7) - System architecture and the data flow of the proposed DIP 

model. 
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The DIP model can efficiently process many images at a time. These images 

may be obtained from on-line (real-time) or offline image sources. On-line 

image sources include capturing devices, such as: digital camera, satellite 

images, etc. Off-line image processing means those images which are 

captured, stored to be processed in a later time, such as internet images. 

DIP uses JPVM environment as message passing tools between PCs in the 

network, and the algorithm in DIP model implemented in java language.  

 

 

 

 

 

 

 

 

 

 

 

 Figure (3.8)- Algorithm of the DIP model. 

3.4 .Data Communication Library 

In LAN-based distributed system, data can only be exchanged among PCs 

using a message passing methodology. There are many message passing 

libraries in use in distributed LAN-based distributed systems, such as: 

Message-Passing Interface (MPI), Parallel Virtual Machine (PVM) and Java 

Parallel Virtual Machine (JPVM) [Lee 99].  

Algorithm for Master 

Step 1: Initialize LAN-based System. 

Step 2: Read images data. 

Step 3: Initial timer. 

Step 4: Select number of slaves. 

Step 5: Calculate slave job. 

Step 6: Send images to slaves. 

Step 7: Post-processes for images. 

Step 8: Receives images from slaves. 

Step 9: Stop timer.  

Step 10: Post processes for images. 

End  

   

Algorithm for slave 

Step 1: Initialize LAN-based System. 

Step 2: Receive images from master. 

Step 3: Post-processes for images. 

Step 4: Send images to master. 

End    
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3.4.1 Parallel Virtual Machine (PVM) 

Parallel Virtual Machine (PVM) is a software system that permits a collection of 

many heterogeneous computers that networked together to be one large 

computer working in parallel mode [Yal 98]. The PVM is designed to link 

computing resources together and provided users with a transparent efficient 

parallel platform for running their computer applications. The PVM transparently 

and independently handles all message routing data conversion and task 

scheduling across a network of incompatible computer architectures. 

Therefore, it is used in many sites all over the world to solve important problems 

in scientific, engineering, industrial and in medical applications. 

The PVM system can be used to run different computers in parallel mode 

(concurrently), and it is designed to have many important features and 

capabilities, such as: 

(1) Reduce the cost to solve problems. 

(2) Reduce the contention for resources. 

(3) More effective implementations of an application. 

(4) Make the parallel programming in a heterogeneous collection of 

processors straightforward. 

3.4.2 .Java Parallel Virtual Machine (JPVM) 

The Java language and its libraries and environment provide a powerful and 

flexible platform for programming computer clusters. Java tools enable 

experimentation in both management aspects as well as performance aspects 

of cluster systems [Haw 99]. 

The JPVM is a PVM like library of object classes implemented in and for use 

with the Java programming language. The library supports an interface similar 

to C and FORTRAN interfaces provided by the PVM system, but with syntax 

and semantics enhancements afforded by Java and better matched to Java 

programming styles.   
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The JPVM is a combination of both ease of programming inherited from Java 

and high performance through parallelism inherited from the PVM. The JPVM 

library is software used for message passing in distributed memory MIMD LAN-

Based parallel computing system. The JPVM has many features not found in 

standard PVM, such as [Pes 04]: 

(1) JPVM is thread safety; it can control multiple Java threads inside a single 

JPVM task. 

(2) Standard PVM has single communication end-points for every task, but 

the JPVM can create a new task within a process every time, so it has 

multiple communication end-points for each task. 

(3) JPVM code can be maintained much simpler than the PVM across 

heterogeneous machine. 

(4) JPVM has default-case direct message routing. 

For as mention features of Java language and JPVM tools, the DIP model use 

the JPVM as a parallel environment. 

As in the PVM, the programmer decomposes the problem to be solved into a 

set of cooperating sequential task implementations. These sequential tasks 

execute on a collection of available processors and invoke special library 

routines to control the creation of additional tasks and to pass messages among 

tasks. In JPVM, task implementations are coded in Java, and support for task 

creation and message passing is provided by the JPVM library. 

The architecture of the JPVM is similar to architecture of the PVM, which is 

consisting of the daemon, the console and the interface library functions. The 

JPVM library routines require run-time support during execution in the form of 

a set of JPVM daemon processes running on the available collection of 

processors. The console can start in any processors in the network. The JPVM 

console can be used to list the hosts available to the system and the JPVM 

tasks running in the system.  
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Tasks in the JPVM environments are process-based; however the 

communications are using Transfer Control Protocol (TCP) sockets through the 

network. Figure (3.9) outlines the JPVM architecture.    

 

Figure (3.9): JPVM architecture [Lee 99].   

3.5.Implementation of the DIP Model  

First the JPVM platform must starting by run jpvmDaemon.java program in all 

computers in the LAN-based system, then run jpvmConsole.java in one 

computer as a master computer. The master controls the message passing 

techniques in the network. There are two programs running in the DIP model, 

the first program is the master (server) and the other program is the slave 

(client), which is duplicated on all slave processors. Both of programs have the 

same noise reduction and edges detection algorithms.  

The master PC starts to capture or input sequence of noisy images from 

devices or files, these images may have similar or different sizes. Task creation 

start in master program by using jpvm.pvm_spawn( ) method, which has 

number of slaves and the java class program for slave.  
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When the master has number of images it is start to distribute these images 

between slaves by send the same number of images for each slave in the LAN, 

the distribution of images depends on the total number of images and number 

of slaves.  

The master does not send all images at the same time; it is sends images one 

by one to each slave using a for-loop to prevent slaves from being idle while 

waiting until first slaves receive their images, the images are storing in buffers. 

Then each slave reads one image from the buffer and start processing. When 

a slave finishes processing the image it read, then it reads another image from 

buffer and so on until it processes all images sent by the master.  

At this time when the master finishes send all images to slaves it start 

processing number of images to save time and to be not idle and waiting receive 

from slaves. This technique utilizes load balancing for computer in LAN system. 

The number of images for master must be less than number of images sends 

to each slave, because the master has high communication time than slaves. 

Also number of processing images in master depends on number of all images 

and number of slaves in LAN system. 

When slaves finish processing all images, they start send processed images 

back to the master. The master starts receiving all images from slaves and then 

the master output all images.  

3.6 .Performance Measures 

In order to measure the performance of a parallel algorithm, two main factors 

are considered, these are:  

(1) Speedup factor (S) 

(2) Parallelization Efficiency (E) 

In what follows an introduction is given for each of them. 
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 (1) Speedup factor (S) 

In general, the speedup factor is defined as the ratio between the time required 

to perform a particular computation on a sequential mode machine (Ts) and the 

time required to perform an equivalent computation on a parallel mode machine 

(Tp). Thus, the speedup factor is expressed as [Wil 99]:  

pT

T
S s                  

 (3.6) 

However, for a LAN-based distributed computing system, Ts represents the 

time required to perform the computation on a single PC (single processor), and 

Tp is the time required to perform the computation on all active PCs (active 

processors) that includes both the master and all servers that are participating 

in the computations.  

Ideally, the maximum speedup that can be achieved is equal to the number of 

active PCs within the LAN network. However, there are several factors that limit 

and prevent the speedup from reaching its maximum value, such as: 

i. Load balancing when not all processors perform useful computation 

all the time, and some of the processor may be left simply idle for a 

period of time during the computation. 

ii. Software overhead due to the extra computation may be required in 

the parallel version of the code not appearing in the sequential 

version, for example, to recomputed constants locally. 

iii. Communication time for data and messages exchange among the 

processors.  

(2) Parallelization efficiency (E) 

Another factor of interest is the parallelization efficiency, which is defined as the 

ratio between the speedup factor that is achieved and the maximum possible 
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 speedup factor. The parallelization efficiency may be expressed as [Wil 99]: 

100
S

E
n

          (3.7) 

The n is the number of active processors within the network (master plus the 

number of running slaves). 

 Another way to define E as the actual computation CPU time (Tcomp) divided by 

the total computation and communication times (Tp) which represents the sum 

of the computation CPU time (Tcomp), communication time (Tcomm), and other 

timing overheads (Tover). Accordingly, the parallelization efficiency can be given 

as: 

100
comp

comp comm over

T
E

T T T
 

 
      (3.8) 

Since, the Tover, including setup time, is very small compared to Tcomp and Tcomm, 

then Tover can be neglected and E is expressed as: 

100
comp

comp comm

T
E

T T
 


        (3.9) 

It is also can be expressed as: 

 
1

100
1

E
R

 


       (3.10) 

Where R is the ratio between the communication and computation times. It is 

clear from the above two equations that E depends on the amount of time that 

is spent on communication or on the ratio R between the communication and 

computation times. The maximum efficiency can be achieved when Tcomm (i.e., 

R) approaches zero. 

In this thesis, we introduce another parameter which is the image processing 

rate ( ). It is defined as the number of images that can be processed by the 

systems per unit time (say, sec). It can be expressed as:  
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m

T
           (3.11) 

Where  

 is the image processing rate (Image/sec), 

m  is the number of images processed (Images),  

T  is the total job time (sec).  

For a serial computations T is take to be equal to Ts, while for a parallel or 

distributed computations T is taken to be equal to Tp, where Tp is the sum of 

both Tcomp and Tcomm. 
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Chapter Four 
Results and Discussions 

This chapter presents the performance evaluation of the distributed image 

processing (DIP) model described in Chapter 3. The model is implemented to 

run on a standard LAN-based computer system. The LAN composes from a 

number of Personal Computers (PCs) interconnected through an Ethernet 

10/100 Mbps switch. The PCs used are Acer verition GT series, Intel (R), 

Pentium 4 processor with 2.8 GHz speed. The operating system is Windows 

XP.  

Two versions of the image processing application are developed, one is a serial 

version to run on a single PC for estimating the serial computation time (Ts) 

(also referred to as T1), and a parallel version of code using the DIP model for 

estimating the parallel computation time (Tp) (also referred to as Tn, where n is 

the number of PCs on which the computations are concurrently performed). 

Both programs are written in Java language and the Java Parallel Virtual 

Machine (JPVM) is used as data communication library for message passing 

between the processors.  

The image processing analysis considered is performing edge detection in 

noisy images. Sobel algorithm is used for efficient edge detection, and in order 

to enhance the performance of the algorithm for estimating edges in noisy 

images, a noise reduction techniques based on median filter is used to reduce 

or ultimately remove noise for the image before proceeding with edge detection. 

Both the Sobel algorithm and the median filter are based on convolution 

function. The accuracy of the edge detection process depends on the size of 

the convolution function. In this work, a convolution function of 3x3 and 5x5 

kernel sizes are considered.  

The performance of the DIP model is evaluated in terms of a number of 

parameters, which are defined in Chapter 3, these are: 
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(1) Speedup factor (S) 

(2) Parallelization efficiency (E) 

(3) Image processing rate ( ) (Image/sec) 

Section 4.1 investigates the effect of the convolution function kernel size on the 

total computation time, which enable use to estimate the image average 

processing time. In Section 4.2, the performance of the DIP model when 

implemented on a LAN-based system to perform image processing analysis, 

using 3x3 and 5x5 convolution function kernel sizes, on various numbers of 

noisy images of 256x256 size. The performance of the DIP model for these two 

different kernel sizes is compared in Section 4.3.  

4.1. Investigate the Effect of the Convolution Function 

Kernel Size 

It has been discussed in Chapter 3 that the image processing application this 

thesis concerned with is edge detection in images distorted with impulsive 

noise. The edge detection algorithm used is the astonishing Sobel algorithm. In 

order to enhance the performance of this algorithm for effectively estimating 

edges in noisy images, each image is preprocessed for noise reduction using 

median filter. Both the edge detection algorithm and the noise reduction filter 

use a convolution function. The size of the convolution function affects the 

performance of the application in terms of accuracy and processing 

(computation) time. A more accurate solution can always be obtained with 

higher kernel size (see Figure (4.1)), but this is at the cost of higher computation 

time.  
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 (a) (b) (c) 

Figure (4.1): Comparison images. 

 (a) Lena image with distorted wit impulsive noise. 

                     (b) Edge detected with 3x3 kernel size.  

                     (c) Edge detected with 5x5 kernel size. 

This section investigates the effect of the size of convolution function on the 

computation time (Tcomp) for various numbers of noisy images (m) of size 

256x256. The results obtained are tabulated in Table (4.1) and plotted in Figure 

(4.2). The results obtained illustrate the following:  

i. The Tcomp increases linearly with m. 

ii. The average Tcomp is about 0.12 sec/image for 3x3 kernel size, and 

about 0.36 sec/image for 5x5 kernel size. 

iii. The Tcomp for 5x5 kernel size is about 3 times the time for 3x3 kernel 

size.  

iv. The image processing time is around 8 image/sec for 3x3 kernel size 

and around 2.7 image/sec for 5x5 kernel size, because the 5x5 kernel 

is more time consuming. It is calculated by dividing the total number of 

images processed by total computation time as given by Equation 

(3.11). But, at the same time it is more accurate. 

Table (4.1) 
Serial computation time (Ts) and image processing rate ( ) using 3x3 

and 5x5 convolution function kernel sizes. 

No. of 
images 

Computation time (Ts)     
(sec) 

Image processing rate ( ) 
(Image/sec) 

3x3 5x5 3x3 5x5 

100 12.50 36.63 8.00 2.73 

200 24.91 73.06 8.03 2.74 

300 37.20 109.83 8.07 2.73 

400 49.66 146.02 8.05 2.74 

500 62.03 182.50 8.06 2.74 

600 74.82 219.90 8.02 2.73 

700 86.88 255.77 8.06 2.74 

800  99.45 292.05 8.04 2.74 
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900 111.21 328.63 8.09 2.74 

1000 123.73 365.27 8.08 2.74 

1100 136.02 401.28 8.09 2.74 

1200 149.80 437.72 8.01 2.74 

1300 162.66 473.92 7.99 2.74 

1400 174.78 509.27 8.01 2.75 

1500 186.01 545.20 8.06 2.75 

 Number of operations in 3x3 kernel size convolution function are 

589824. 

 Number of operations in 5x5 kernel size convolution function are 

1638400.  

 

Figure (4.2). Serial computation time vs. number of images for 3x3 and 

5x5 convolution function kernel sizes.  

4.2. Performance Evaluation  

This section evaluates the performance of the DIP model running on the LAN-

based computer systems described above. The performance is evaluated in 

terms of S, E, and  for various numbers of collaborative PCs (n), and various 

m feed into the system. The accuracy of the serial and the parallel versions of 
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 code are validated against each other, and they demonstrate an excellent 

agreement between them. Furthermore, in order to investigate the effect of 

Tcomp and Tcomm (communication time) on the performance of the model, the 

image processing computations are performed for a convolution function of 

various kernel size, these are: 3x3 and 5x5. 

(1) Results for 3x3 convolution function kernel size 

For a convolution function of 3x3 kernel size, the DIP model is used to 

parallelize the image processing application for edge detection in noisy images 

using the algorithms described in Figure (3.8), to run on the LAN-based system. 

The computation is performed for various m, in practice, up to 1500 images 

were processed, but the results demonstrate little variation, therefore, we 

present results for up to 500 images. 

The results obtained for the serial Tcomp (in this case it is also referred to as Ts); 

which is equivalent to the Tcomp on a single PC (T1), parallel Tcomp (in this case 

it is also referred to as Tp); which is equivalent to the Tcomp on n PCs (Tn) (n≥2), 

S, E, and , are presented in Table (4.2).  

 

Table (4.2) 
 Comparison of the performance of the DIP model running on a LAN-

based system of various number PCs (n≤5) and images (m≤500).  
(Results for 3x3 convolution function computation) 

No. of 
images 

No. of processors (PCs) (n) 

1 2 3 4 5 

CPU time (sec) 

 Ts Tp  

 T1 T2 T3 T4 T5 

100 12.50 9.31 8.62 8.30 7.67 

200 24.91 17.88 17.20 15.76 15.06 

300 37.20 29.88 25.71 23.79 22.30 

400 49.66 41.58 35.00 31.62 29.89 

500 62.03 52.92 43.17 38.91 36.88 

Speedup factor (S) 

100 Serial 
Computation 

(S=1) 

1.34 1.45 1.51 1.63 

200 1.39 1.45 1.58 1.65 

300 1.24 1.45 1.56 1.67 
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400  1.19 1.42 1.57 1.66 

500 1.17 1.44 1.59 1.68 

Parallelization efficiency (E) (%) 

100 

Serial 
Computation 

(E=100) 

67.1 48.4 37.7 32.6 

200 69.7 48.3 39.5 33.1 

300 62.2 48.2 39.1 33.4 

400 59.7 47.3 39.3 33.2 

500 58.6 47.9 39.9 33.6 

Image processing rate ( ) (Image/sec) 

100 8.00 10.74 11.60 12.05 13.03 

200 8.03 11.19 11.63 12.69 13.28 

300 8.07 10.04 11.67 12.61 13.45 

400 8.05 9.62 11.43 12.65 13.38 

500 8.06 9.45 11.58 12.85 13.56 

According to the results presented in Table (4.2), the following points can be 

identified: 

i. For equivalent computations (i.e., for the same number of images), E 

is decreasing as n increases, and almost it steadily decreases 

between 70% for 2 PCs to 30% for 5 PCs. 

This is because as given in Equations (3.9) and (3.10), when the 

number of PCs increases, the number of images allocated for each 

PC is decreased and consequently the Tcomp is also decreased. 

Furthermore, as n increases, the Tcomm is increased, which means R 

is increased, where R is defined as the ratio between Tcomm and Tcomp.  

The Tcomm is increasing as n increases, because the total number of 

images exchanged across the networks is also increased. For 

example, if m=500 images, for n=2 PCs, the number of images 

exchanges is 250 images. While for n=3, 4, and 5, the numbers of 

images exchanged are 334, 375, 400 images, respectively.  

ii. For serial computation (1 PC), as discussed in Section 4.1, the total 

Tcomp increases steadily as m increases, with average Tcomp of 0.12 

sec/image. For parallel computation (n≥2), we can recognize two 

types of behavior. For n=2 and n=3, S and E are decreasing as m 
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iii.  increases. For example, for n=2, E decreases from 67.1% (m=100 

images) to 58.6% (500 images). On average, we can estimate that it 

is reduced by ≈2% for each extra 100 images. However, for n=3, it is 

reduced by ≈0.1% for each extra 100 images. For a certain value of n 

(n>3), S and E are almost remained unchanged with m, however, only 

slight increase is recognized.   

iv. A speedup of approximately 1.6 can be achieved for 5 PCs running 

concurrently with a parallelization of efficiency of just above 30%. This 

is mainly because the processing time per image is very low, and 

although we increase the number of images, but this adds 

communication overheads, so that R almost remains unchanged and 

consequently the parallelization efficiency. 

v. For a particular m, it is clear that when n increases, Tp is decreasing, 

and consequently  increases as it is given by Eqn. (3.11) as, where 

=m/Tp.   

Figures (4.3) and (4.4) show the variation of S and E with n for various values 

of m. 
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Figure (4.3). Variation of S with n for various values of m and 3x3 kernel size. 

 

Figure (4.4). Variation of E with n for various values of m and 3x3 kernel size. 

(2) Results for 5x5 convolution function kernel size 

The following set of runs is equivalent to the above set, except it uses a 

convolution function of 5x5 kernel size, so that Tcomp is actually increased 

without affecting Tcomm. As it had been shown in Section 4.1 that the 
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 computation time is 0.36 sec/image for 5x5 kernel size. Once again, the 

computation is performed for various m, in practice, up to 1500 images were 

processed, but the results demonstrate little variation, therefore, we present 

results for up to 500 images. 

 

Table (4.3) 
Comparison of the performance of the DIP model running on a LAN-based 

system of various number PCs (n≤5) and images (m≤500).  
(Results for 5x5 convolution function computation) 

No. of 
images 

No. of processors (PCs) (n) 

1 2 3 4 5 

CPU time (sec) 

 Ts Tp  

 T1 T2 T3 T4 T5 

100 36.6 21.7 16.6 14.2 12.4 

200 73.1 42.4 31.9 27.3 24.2 

300 109.8 63.1 47.6 40.7 36.2 

400 146.0 83.3 63.6 52.7 48.1 

500 182.5 104.9 79.3 66.0 59.5 

Speedup factor (S) 

100 

Serial 
Computation 

(S=1) 

1.69 2.20 2.58 2.95 

200 1.72 2.29 2.68 3.02 

300 1.74 2.31 2.70 3.03 

400 1.75 2.30 2.77 3.04 

500 1.74 2.30 2.77 3.07 

Parallelization efficiency (E) (%) 

100 

Serial 
Computation 

(E=100) 

84.3 73.5 64.4 59.0 

200 86.2 76.4 66.9 60.4 

300 87.0 76.9 67.4 60.7 

400 87.6 76.5 69.3 60.7 

500 87.0 76.7 69.1 61.3 

Image processing rate ( ) (Image/sec) 

100 2.73 4.61 6.02 7.04 8.06 

200 2.74 4.72 6.27 7.33 8.26 

300 2.73 4.75 6.30 7.37 8.29 

400 2.74 4.80 6.29 7.59 8.32 

500 2.74 4.77 6.31 7.58 8.40 

The results obtained for Ts, Tp, S, E, and , are tabulated in Table (4.3). The 

following points can be identified:   
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i. Using 5x5 convolution function provides better accuracy for edge 

estimation than 3x3 convolution function. 

ii. Once again, for the same number of images, E is steadily decreasing 

as n increases, but with lower rate when compared with 3x3 

convolution function. For example, for m=100 images, it decreases 

from ≈84% for 2 PCs to ≈60% for 5 PCs. This demonstrates that the 

performance is highly improved when the relative Tcomp is increased, 

while Tcomm is remained unaltered. 

Despite the fact that Tcomp is relatively high (3 times higher), but as 

discussed above when n increases, the Tcomm increases to become 

the dominant factor, so that the efficiency is reduced. However, this 

time, for a particular number of PCs and images, Tcomp increases, 

while Tcomm remains unchanged giving lower value for R and as a 

result relatively higher E.  

vi. Unlike 3x3 convolution function computation; because Tcomp is 

dominant, for any value of n, E is increasing with m. However, the 

increasing rate is decreasing as n increases, and when n is further 

increased, Tcomm may become the dominant factor, so that E will start 

decreasing.  

However, this scalability problem is the main drawback of the DIP 

model or the processor-farm methodology. The optimum number of 

PCs that can be used within the LAN-based system depends on the 

value of R. 

vii. A speedup factor of approximately 3 can be achieved for 5 PCs 

running concurrently with a parallelization of efficiency of just above 

60%. This can be considered as an excellent performance and subject 

to increase as the relative Tcomp increases.  

Further numerical examples can be deduced from Table (4.3). Figures (4.5) 

and (4.6) show the variation of S and E against n for various values of m for 

5x5 convolution function computation.  
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Figure (4.5). Variation of S with n for various values of m and 5x5 kernel size. 

 

Figure (4.6). Variation of E with n for various values of m and 5x5 kernel size. 

4.3. Performance Comparison 

In this section, we illustrate crucial conclusions regarding the performance and 

effectiveness of the DIP model for image processing applications running on 

LAN-based systems.   
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A LAN-based system of n PCs may provides an excellent performance in terms 

of S and E, if the image processing time is high as compared to the image 

exchange time, regardless of the number of images processed. It was made 

obvious above that when the average image processing time increases by 3 

times (from 0.12 to 0.35 Image/sec), for 5 PCs LAN-based system, S increases 

≈1.6 to ≈3.0, and E is nearly doubled as it increases from 30% to 60%, 

regardless of the number of images. This means that a higher S and E can be 

achieved if the image processing time becomes even higher and higher. 

Figures (4.7) and (4.8) show the variation of S and E with n for processing 300 

and 500 images with 3x3 and 5x5 convolution function kernel sizes. They 

illustrate that 5x5 kernel size provides a higher performance values in terms of 

S and E.   

 It can be clearly seen from the above discussion that the DIP model 

demonstrates an excellent performance when implemented to run on the cost-

effective LAN-based distributed processing systems for image processing 

applications, and the performance and effectiveness of the model are improving 

with increasing the image processing time. This encourages us to do more 

accurate analysis on each image so that comprehensive image processing 

applications can be designed with less cost.    

 

Figure (4.7). Variation of S with n for various values of m and kernel size.  
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Figure (4.8). Variation of E with n for various values of m and kernel size. 
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Chapter Five 
Conclusions and Recommendations for Future Work 

5.1. Conclusions 

The main conclusions of this work can be summarizes as follows: 

(1) The image processing algorithms demonstrated a satisfactory accuracy, 

especially with the implementation of the median filter algorithm for noise 

reduction or removal (image enhancement). But, such image processing 

application was found to be computationally time consuming application.   

(2) A standard Ethernet LAN-based computing system can be successfully 

used as a cost-effective, efficient, and reliable computing platform to 

speedup such computations, subject to the development of an efficient 

parallel (distributed) implementation model. 

(3) The proposed distributed image processing (DIP) model that is based on 

the well-known processor-farm parallel methodology, demonstrated an 

excellent performance (in terms of efficiently speeding up image 

processing computations), and it performs even better when the 

computation resources increase.  

(4) The Java Parallel Virtual Machine (JPVM) library is proved to be an 

efficient and a reliable tool of data communications (message passing) 

between PCs within a LAN.  

(5) The main characteristics of the DIP model are: 

a. It is simple and easy to implant and configured according to the 

application needs. As in this model the same version of the code 

is running on all slaves, with little variation required for the master. 

b. It involves no interprocessor communications during the 

computation process, apart from that requires for exchanging 

data/results at the start/end of the computations. 
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c. It can provide an exceptional load balance across the network. 

d. It can handle various numbers of PCs within the LAN without any 

variation in the running code. 

e. It can be easily modified to run on various LAN technologies or 

data communication libraries for message passing. 

(6) The speedup factor (S), the parallelization efficiency (E), and Image 

processing rate ( ) depend on the following main parameters: 

f. The actual number of PCs (n) in uses performing computations 

concurrently. 

g. Image computation (processing) time (Tcomp), which depends on 

the size of the processed image and the details of the image 

processing application. 

h. Image communication time (Tcomm), which is a function of the LAN 

technology and the size of the image. 

In addition to the above general conclusions, a number of numerical 

conclusions can be identified. For example, for the image processing 

application, parallelization model (DIP model), message passing library 

(JPVM), size of the image, and the LAN-based system, described in this thesis, 

the following numerical wrapping up performance values can recognized: 

(1) Regarding our application, changing the size of the convolution 

function from 3x3 to 5x5 increased the image processing time by triple 

from 0.12 sec/image to 0.36 sec/image. 

(2) S is directly proportional to n (n≤5). For example, for image processing 

time of 0.12 sec/image, S increased from ≈1.3 to ≈1.6 when n 

increased from 2 to 5 PCs. While for 0.36 sec image processing time, 

S increased from ≈1.7 to ≈3.0 for the same range of n.  
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(3) E is inversely proportional to n (n≤5). For example, for image 

processing time of 0.12 sec/image, E decreased from ≈67% to ≈30% 

when n increased from 2 to 5 PCs. While for 0.36 sec image processing 

time, E decreased from ≈85% to ≈60% for the same range of n. 

(4) This means that tripling the image processing time leads to double 

speedup and efficiency. 

(5) The number of images processed (m) has insignificant effect on the 

performance. 

5.2.Recommendations for Future Work  

The main recommendations for future work may include: 

(1) In order to provide a comprehensive performance evaluation of LAN-

based computing systems implementing the processor-farm-based DIP 

model, it is important to evaluate the performance under the following 

conditions: 

a. More time consuming image processing applications. 

b. Different image size, e.g., 512x512.  

c. More number of PCs connected to the LAN. 

d. Different network technologies, protocols, and topologies.  

(2) Developed DIP models based on the other parallel programming 

methodologies (algorithmic model or geometric model), evaluate the 

performance achieved, and for equivalent computations compare the 

performance of implementing all three methodologies on a similar LAN-

based system. 
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