
www.manaraa.com

I

Development and Performance Evaluation of

a Distributed Image Processing Model

Running on LAN-Based Systems

By

Maysoon Yousef Abu-Hammad

Supervisors

Dr. Ahmad Sharieh and Dr. Hussein Al-Bahadili

This proposal is submitted to the Department of Computer

Science, Graduate College of Computing Studies, Amman

Arab University for Graduate Studies in partial fulfillment for

the requirement for the Degree of Master in Computer

Science.

Department of Computer Science

Graduate College of Computing Studies

Amman Arab University for Graduate Studies

(November- 2008)

www.manaraa.com

II

www.manaraa.com

III

www.manaraa.com

a

Development and Performance Evaluation of a

Distributed Image Processing Model Running on

LAN-Based Systems

By

Maysoon Yousef Abu-Hammad

Supervisors

Dr. Ahmad Sharieh and Dr. Hussein Al-Bahadili

Abstract

Image processing applications involve different processes, such as: image

enhancement, edge detection, object detection, noise removal, color

quantization, etc. Image processing applications are characterized as time and

memory demanding applications, and, for many practical and strategic

applications, needs to be speeded up by using faster computing systems.

The main objective of this work is to develop and evaluate the performance of

a Distributed Image Processing (DIP) model that can be used to perform

extensive image processing computations, on continuous feed-in images, on a

LAN-Based computer system. The model is based on the widely-used

processor-farm parallel methodology, in which each processor executes the

same program independently from other processors, each operating on a

different part of the total data. Therefore, no interprocessor communication is

required other than that involved in forwarding data/results to and from the

processors.

For equivalent calculations, the computation times on a single processor (PC)

and a LAN-based computing system of various number of processors (PCs),

are compared, and the resulting speedup (S), parallelization efficiency (E), and

image processing rate () are quoted. For the LAN-based system, the effect of

www.manaraa.com

b

 varying the number of PCs, the number of images and execution time algorithm

on the overall system speedup, efficiency, and image processing rate, are

estimated.

The LAN-based DIP model demonstrates an excellent performance for

recourse-demanding image processing applications in terms of simplicity,

adaptability, flexibility, expandability, transparency, and high efficiency. It

efficiently utilizes the computational power of a LAN-Based system using a Java

Parallel Virtual Machine (JPVM) library as a data communication toolset for

message passing between PCs, where, for standard image processing

computations, it achieves parallelization efficiencies that vary between 87% to

60% when the number of PCs varies between 2 to 5 PCs connected through

10/100 Mbps Ethernet switch.

www.manaraa.com

c

Arabic Summary

λ

www.manaraa.com

d

Acknowledgment

I would like to express my deep appreciation to my supervisors Dr. Ahmad

Sharieh and Dr. Hussein Al-Bahadili for their guidance during this thesis, and

for their patience in correcting all mistakes during the preparation of this thesis.

I must not forget to thank Dr. Khalid Kaabnah for his comments on the image

processing applications and his guidance during the preparation of this thesis.

Thanks to Sahab Secondary Girls School, for helped to use the computer labs

and it resources.

Thanks to my best friend Buthyna Al-Falougi for her advice during my

research.

Finally, special thanks to my parents for lights my life and tried to solve my

problems. In addition, I thank them for helped me to finish this thesis.

www.manaraa.com

e

Table of Contents

Abstract .. a

Arabic Summary ... c

Acknowledgment .. d

Table of Contents ... e

List of Figures ... g

List of Tables .. i

Abbreviations .. j

Nomenclatures ... k

Chapter One Introduction .. 1

1.1. Image Processing Applications .. 1

1.2. Methods of Introducing Parallelism 2

1.3. Classes of Computer Systems .. 4

1.4. Computer Networks and Distributed Processing 9

1.5. LAN-Based Distributed Systems 11

1.6. Data Communication Libraries for LAN-Based Systems 12

1.7. Methodologies for Distributed Programming 13

1.8. Statement of the Problem .. 15

1.9.Organization of the thesis ... 16

Chapter Two Literatures Review ... 18

2.1 Parallel and Distributed Models for Image Processing
Applications .. 18

2.2 .Parallel and Distributed Models Running on LAN-Based
Systems ... 22

Chapter Three The Proposed Distributed Image Processing
(DIP) Model .. 28

3.1 Image Processing Application .. 29

3.1.1. Convolution Function .. 30

www.manaraa.com

f

3.1.2 .Edge Detection ... 31

3.1.3.Noise Reduction .. 35

3.1.4.Noise in Digital Images .. 36

3.2 .Parallel Programming Methodologies 40

3.2.1 .Processor Farm Parallelism .. 40

3.3. The Proposed Distributes Image Processing (DIP) Model . 42

3.4 .Data Communication Library ... 44

3.4.1 Parallel Virtual Machine (PVM) .. 45

3.4.2 .Java Parallel Virtual Machine (JPVM) 45

3.5.Implementation of the DIP Model 47

3.6 .Performance Measures ... 48

Chapter Four Results and Discussions ... 52

4.1. Investigate the Effect of the Convolution Function Kernel
Size .. 53

4.2. Performance Evaluation .. 55

4.3. Performance Comparison .. 62

Chapter Five Conclusions and Recommendations for Future
Work ... 65

5.1. Conclusions ... 65

5.2.Recommendations for Future Work 67

References ... 68

www.manaraa.com

g

List of Figures

Figure ... Description Page

1.1 MIMD memory-based sub-classification scheme: (a) Shared

memory (tightly-coupled) architecture. (b) Distributed memory

(loosely-coupled) architecture.

8

1.2 Classes of computer networks according to devices separation

distance.

10

3.1 Applying the convolution function. 28

3.2 Sobel edge detection. (a) Original image. (b) Sobel edge

detection.

30

3.3 Soble operators (Gx: vertical direction and Gy: horizontal

direction).

30

3.4 Median filter. 32

3.5 Impulse noise. (a) Original image. (b) Add impulse noise to

image

35

3.6 Reduction impulse noise. (a) Image corrupted by impulse

noise. (b) Noise reduction using median filter with 3×3 sizes of

neighborhoods of pixels

36

3.7 System architecture and the data flow of the proposed DIP

model.

39

3.8 Algorithm of the DIP model. 40

3.9 JPVM architecture. 43

4.1
Comparison images.

(a) Lena image with distorted wit impulsive noise.
(b) Edge detected with 3x3 kernel size.
(c) Edge detected with 5x5 kernel size.

48

4.2 Serial computation time vs. number of images for 3x3 and 5x5

convolution function kernel sizes.

50

www.manaraa.com

h

4.3 Variation of S with n for various values of m and 3x3 kernel

size.

53

4.4 Variation of E with n for various values of m and 3x3 kernel

size.

53

4.5 Variation of S with n for various values of m and 5x5 kernel

size.

56

4.6 Variation of E with n for various values of m and 5x5 kernel

size.

56

4.7 Variation of S with n for various values of m and kernel size. 57

4.8 Variation of E with n for various values of m and kernel size. 58

www.manaraa.com

i

List of Tables

Table Description Page

4.1 Serial computation time (Ts) and image processing rate () using

3x3 and 5x5 convolution function kernel sizes.

49

4.2 Comparison of the performance of the DIP model running on a
LAN-based system of various number PCs (n≤5) and images
(m≤500).
(Results for 3x3 convolution function computation)

51

4.3 Comparison of the performance of the DIP model running on a
LAN-based system of various number PCs (n≤5) and images
(m≤500).
(Results for 5x5 convolution function computation)

54

www.manaraa.com

j

Abbreviations

ATGP Automatic Target Generation Process

DEDIP Development Environment for Distributed Image Processing

DIP Distributed Image Processing

DIPORSI Distributed Processing Of Remotely Sensed Imagery

DLP Data-Level Parallelism

FPGA Field Programmable Gate Array

IEA Iterative Error Analysis

IRS Indian Remote Sensing

JPVM Java Parallel Virtual Machine

JVM Java Virtual Machine

MPI Message Passing Interface

NUMA Non Uniform Memory Access

PB Processing Buffer

PEs Processing Elements

P-IEA Parallel Iterative Error Analysis

P-LSU Parallel Linear Spectral Unmixing

P-MORPH Parallel Morphological target detection algorithm

P-PPI Parallel Pixel Purity Index

P-UFCLS Parallel Unsupervised Fully Constrained Least Squares

PVM Parallel Virtual Machine

RPC Remote Procedure Call

SIMD Single-Instruction Multiple-Data

SMT Simultaneous Multithreading

UFCLS Unsupervised Fully-Constrained Least Squares

VLSI Very Large Scale Integrated

www.manaraa.com

k

Nomenclatures

S Speedup factor

E Parallelization efficiency

n Number of active processors within the network

 Image processing rate

Gx Gradient in the vertical direction

Gy Gradient in the horizontal direction

s(i,j) True image

(i,j) The noise

g(i,j) Image with additive noise

SNR Signal-to-Noise Ratio

Ts Time required to perform the computation on a single PC
(single processor)

Tp Time required to perform the computation on all active PCs
(active processors)

Tcomp Actual computation CPU time

Tcomm Communication time

Tover Overheads time

R The ratio between the communication and computation
times

m Number of images processed

T The total job time

www.manaraa.com

1

Chapter One
Introduction

1.1. Image Processing Applications

Digital image processing is an ever expanding area with applications reaching

out our everyday life such as medicine, space exploration, surveillance,

authentication, automated industry inspection, security, and many more areas.

Such applications involve different processes like image enhancement, edge

detection, object detection, noise removal, color quantization, etc [Rao 06, Civ

04, and Mai 06].

The image processing application that is considered in this thesis performs

edge detection in distorted or noisy images. In particular, it uses one of the most

efficient and reliable edge detection algorithms, namely, Sobel algorithm [Kel

05, Rou 06]. However, due to the presence of noise, the performance of the

edge detection algorithm is degraded as the noise level increases. To enhance

the performance of the edge detection algorithm for processing distorted

images, a pre-processing noise removal algorithm is performed for image

enhancement. Median filter, which is based on the time-consuming convolution

algorithm, is the most widely used filter for noise reduction or removal in

distorted images. A detail description of the above image processing algorithms

will be presented in Chapter 3.

Image processing applications are characterized as resource (processing time

and memory) demanding applications, and, for many practical and strategic

applications, needs to be speeded up [Kel 05]. Despite the fact that

implementing such applications on general-purpose scalar computers is easier,

but, in addition to be slow, it has other drawbacks such as memory restriction,

single feed-in/feed-out (Input/output (I/O) port) and other peripheral devices

limitations. The optimum and most satisfactory solutions to these problems can

be achieved through using parallel or distributed computing systems [Kel 05,

Bra 01, and Man 06].

www.manaraa.com

2

Parallel Computing is the simultaneous use of multiple computing resources to

solve a computational problem. To conduct parallel computing, the computing

resources can include a single computer with multiple processors (Parallel

Processing), or an arbitrary number of computers connected by a network or a

combination of both (Distributed Processing). The key benefit of parallel and

distributed computing is to solve large and complex problems fast. Other

benefits include: taking advantage of non-local resources to overcome memory

constraints of a single computer, cost savings by using multiple "cheap"

computing resources.

Since, this thesis is concerned with the implementation of image processing

applications on distributed system architectures; in particular, a LAN-based

distributed processing system, this chapter is devoted to explain how

parallelism can be introduced into computer systems, provide an introduction

to the different computer architectures and classifications, and the parallel

methodologies that have developed to efficiently utilize the computing power of

such advanced computing systems.

1.2. Methods of Introducing Parallelism

Parallelism in various forms appeared in computers produced during the 1960s,

and proved to be an efficient approach. Nevertheless, greater parallelism needs

to be introduced into the design of computing systems because improvement

in circuit speed alone cannot produce the required performance. The

parallelism was limited by the cost of logic units, so that the computer was

substantially serial with only moderate capability to support parallel operation.

As the cost of components decreased drastically in the last two decades,

computer design has become more and more complex to achieve higher

computation speed. By the end of 1960s and the beginning of 1970s several

projects were undertaking for the development of truly parallel computers [Gra

02].

www.manaraa.com

3

The principal way of introducing parallelism into the architecture of computers

can be summarized as follows [Gra 02, Ste 06]:

(1) Pipelining: The application of assembly-line techniques to improve the

performance of an arithmetic or control unit.

(2) Functional: Providing several independent units for performing

different functions, such as: logic, addition or multiplication, and

allowing these to operate simultaneously on different data.

(3) Array: Providing an array of identical processing elements (PE) under

common control, all performing the same operation simultaneously

(i.e., lockstep mode) but on different data stored in the private

memories.

(4) Multiprocessing: The provision of several processors, each obeying its

own instructions on different data, either stored locally or in a common

memory.

Of course, individual designs may combine some or all of these parallel

features. For example processor array may have pipelined arithmetic units as

its PEs, and one functional unit in a multi-unit computer might be a processor

array.

History shows that parallelism has been used to improve the effectiveness of

computers since the earliest designs, and that it has been applied at several

distinct levels which might be classified as [Hoc 88]:

(1) Job level (between jobs or between phases of a job).

(2) Program level (between parts of a program or within DO LOOPs).

(3) Instruction level (between phases of instruction execution).

(4) Arithmetic and bit level (between elements of a vector or matrix or

within arithmetic logic circuits.

www.manaraa.com

4

The main requirement of computer architectures in allowing parallelism at the

job level is to provide a correctly balanced set of replicating resources, which

comes under the general classification of functional parallelism, applied overall

the computer installation. In this respect, it is important for the level of activity

to be monitored well in all parts of the installation, so that bottle-necks can be

identified, and resources added or removed as circumstances demand.

The types of parallelism that arise during the execution of a program also need

to be carefully considered. Within such a program there may be sections of

code that are quite independent of each other and could be executed in parallel

on different processors in a multiprocessor environment (e.g., a set of linked

processors). Some sections of independent code could be recognized from a

logical analysis of the source code, but others will be data dependent and

therefore not known until the program is executed.

In another case, different executions of a loop may be independent of each

other, even through different routes are taken through the conditional

statements contained in the loop. In this case, each microprocessor can be

given the full code, and as many passes through the loop can be performed in

parallel as there are microprocessors. This situation has important applications

in many areas of science and engineering.

1.3. Classes of Computer Systems

There is wide variety of different computer systems, in particular multiple

processing systems, have developed through the years. In order to provide a

general framework for understanding these different types it is important to be

able to order them into some kinds of taxonomy. Ideally, this classification

scheme should present a methodology for the decomposition of any processing

system, such that all the differences and similarities between configurations are

indicated. It would be advantageous if such taxonomy could be developed to

bring out the diversity in different system designs. The difficulty is choosing the

minimum amount of information characterizing the computer system that should

be incorporated into the classification scheme.

www.manaraa.com

5

Many schemes have been proposed for characterizing the various parallel and

quasi-parallel computing systems in existence. Computer systems may be

classified according to one of the following principles:

(1) Hardware-based classification scheme

(2) Instruction and data streams-based classification scheme (Flynn

taxonomy)

In what follows a brief description is given for each of the above classification

schemes. However, further details can be found in related literatures, such as:

[Bau 02, Kel 05, and Rao 06].

(1) Hardware-based classification scheme

According to this classification scheme, i.e., the architecture of the hardware;

three principle types of computer architecture emerged, these are [Kel 05]:

i. Pipeline (vector) computers.

ii. Array (synchronous) processors.

iii. Multiprocessor (asynchronous) systems.

Discussion of the above types of computer architecture is beyond the scope of

this thesis.

(2) Instruction and data streams-based classification scheme

Computer systems may be usefully further classified according to how the

machine conveys its instructions to the data being processed. This scheme was

first proposed by Flynn [Fly 72]. In the approach taken by Flynn “instruction

stream” and “data stream” are divided into two types, namely, single or multiple.

The term stream is used to denote a sequence of items (instruction or data) as

they are executed, or operated upon, by single processor. An instruction stream

is a sequence of instructions executed by the machine, whereas the data

stream is a sequence of data, including input or partial or temporarily results

called for by the instruction stream.

www.manaraa.com

6

Four classes of processing systems can be identified, according to whether the

instruction or data streams are single or multiple, these are:

(i) SISD (Single Instruction stream, Single Data stream)

(ii) SIMD (Single Instruction stream, Multiple Data stream)

(iii) MISD (Multiple Instruction stream, Single Data stream)

(iv) MIMD (Multiple Instruction stream, Multiple Data stream)

In what follows a brief description is given for each of the above classes.

However, further details can be found in related literatures, such as: [Kel 05,

Caa 05, and Man 06].

(i) SISD (Single Instruction stream, Single Data stream)

This is the conventional (i.e., serial) von Neumann computer [Wac 05] in which

there is one stream of instructions (therefore, in practice, all one instruction

processing unit) and each are arithmetic instruction initiates one arithmetic

operation, leading to a single data stream of logically related arguments and

results. It is irrelevant whether pipelining is used to speed up the processing of

instructions or the arithmetic.

(ii) SIMD (Single Instruction stream, Multiple Data stream)

The SIMD category is further subdivided into vector (pipelined) and parallel

(array or synchronous processors). For example, a vector processor is defined

as SIMD processor, since a single vector instruction will operate on a vector (or

vectors) of data to yield a result vector. Vector architecture is characterized by

arithmetic units which are designed like automobile assembly; the units are

segmented to perform smaller tasks, each of which may take a relatively small

amount of time to complete [Kel 05].

Although, the overall time for the totals task (e.g., multiplication) may exceed

the time for a conventional (scalar) arithmetic unit to perform the same function,

the segmented arithmetic unit can accept vectors of operands, which stream

www.manaraa.com

7

 through the unit in a lockstep fashion. This makes the overall operation, for

example, processing a vector of 64 elements, faster as compared to a loop of

64 performed by a scalar machine.

The synchronous array processors are classified as SIMD, because all CPUs

operate in lockstep mode, obeying a single instruction, taken from the Master

Control Unit (MCU), with perhaps different data. Thus, we need to differentiate

between SIMD vector and SIMD parallel. This distinction is important not only

from an architectural standpoint, but also from a functional standpoint, since

these two classes have important similarities, which might be exploitable by

algorithms developer.

(iii) MISD (Multiple Instruction stream, Single Data stream)

Instead of parallelism in the data stream, it is conceivably possible to have

parallelism in the instruction stream. This provided by a class of computers with

MISD architecture. In this case, each operand operated upon simultaneously

by several instructions. This mode of operation is generally unrealistic for

parallel computers, therefore, at the present time, there is no practical machine

having this type of architecture [Wac 05].

(iv) MIMD (Multiple Instruction stream, Multiple Data stream)

This is a general-purpose high performance computing systems, which uses

multiple processing units to execute multiple instructions on multiple data, both

independently and concurrently. Concurrency is a high level, or global, form of

parallelism that denotes the independent operation of a collection of

simultaneous computing activities, rather than the lockstep connection that

exits in SIMD systems.

Concurrency is essentially an interactive parallelism that allows the

asynchronous operation of processors in a system. Example of such

architecture are provided by the data flow machine, the N-Cube processor,

transputer-based Meiko Computing Surface, the ESPIRIT supernode machine,

CRAY-XMP, IBM-3090, etc.

www.manaraa.com

8

MIMD computer systems are different in that they consist of several

interconnected processing units, memory, and I/O units. This leads to a sub-

classification scheme for MIMD processors, which is based on memory

structure. In this respect, as shown in Figure (1.1), we have two classes, these

are:

(a) Shared memory (tightly-coupled) architecture, in which the memory is

shared by all processors, where all memory is equally accessible to all

processors.

(b) Distributed memory (loosely-coupled) architecture, in which each

processor has its own private memory, which other processors cannot

access directly.

Figure (1.1). MIMD memory-based sub-classification scheme: (a) Shared

memory (tightly-coupled) architecture. (b) Distributed memory (loosely-

coupled) architecture.

Shared memory processors tend to be more expensive due to the need to have

an expensive bus or complex switching network to allow all processors access

to all memory. The shared memory approach provides fast interprocessor

communication but is limited by the speed at which the shared memory can

operate as the number of processors increases. With current technology, cost-

effective shared memory systems tends to saturate at a relatively small number

of processors and the addition of further processing units has limited effect on

overall system performance.

Shared

memory CPU

I/O

CPU

I/O

(a)

CPU

I/O

CPU

I/O

Local

memory

Local

memory

Communication

link

(b)

www.manaraa.com

9

Distributed memory systems do not suffer from an asymptotically approached

limited to their ultimate performance. However, one must then supply

communication channels between processors, since it is likely that processors

will need to communicate data during parallel computation. In such systems,

interprocessor communication is based on “message-passing” via dedicated

communication channels. It is termed message-passing since the way in which

processor access the memory in processor B is via a message to B, asking B

to send the appropriate data.

Thus, distributed memory and message passing are nearly synchronous terms,

at least in current designs. This is turning out to be a crucial issue, due to the

relatively slow interprocessor communication speeds for a distribute memory

processor, compared to shared memory processor systems. Also, such

systems need to provide an additional channel for each added processor, so

that the system total communication performance is increased along with its

processing performance. However, there is no inherent limit to the ultimate

performance achievable with such computer systems. Furthermore, this

approach makes it feasible to use a very large number of simple and

comparatively cheap to manufacture processing units.

1.4. Computer Networks and Distributed Processing

Computer networks are defined as a number of independent digital processing

devices (e.g., computers, microprocessor-based devices, personal digital

adapters (PDAs), mobile phones, or any digital devices with compatible

communication capabilities) that are connected together using wire or wireless

data communication links [Tan 03]. Typically, each device, which also refers to

them as a node, has its own central processing unit (CPU), memory, and I/O

unit.

From parallel or distributed architectural point of view, and according to the

discussion in Section 1.3, computer networks can be classified as distributed

memory MIMD computer systems. There are many criteria that are used to

classify computer networks. One widely used criterion for classifying computer

www.manaraa.com

11

 networks is their scale (distance), i.e., their physical size. Distance is important

as a classification metric because it imposes different signal propagation media,

modulation techniques, protocols to be used at different scales. Accordingly,

computer networks can be classified as [Tan 03]:

(1) Personal Area Network (PAN)

(2) Local Area Network (LAN)

(3) Metropolitan Area Network (MAN)

(4) Wide Area Network (WAN)

(5) International Network (Internet)

Figure (1.2) shows the distance associated with each of the above classes.

Discussion of the different classification criteria and the different distance-

based classes of computer networks are beyond the scope of this thesis. In

this work, we concern with using a LAN as a distributed memory MIMD

computer system to speedup image processing computations, and evaluate the

performance of such system.

Interprocesso
r distance

Processors

located in the
same

Example

1 m Square meter Personal Area Network (PAN)

10 m Room

 Local Area Network (LAN) 100 m Building

1 km Campus

10 km City Metropolitan Area Network (MAN)

100 km Country
 Wide Area Network (WAN)

1000 km Continent

10,000 km Planet The Internet

www.manaraa.com

11

Figure (1.2). Classes of computer networks according to devices separation

distance [Tan 03].

1.5. LAN-Based Distributed Systems

During the last four decades, there has been an impressive gain in computer

performance, in terms of speed and memory. Not only due to advances in

technology, but also due to innovations in computer architectures, so that a

number of high performance supercomputing systems or parallel computers is

emerged. In practice, a number of parallel computers have been designed,

developed, and commissioned, such as: the CRAY series, the Cyber machines,

the Convex machines, US-connection machine, AMT DAP series, transputer-

based Meiko Computing Surface, etc. However, running such machines are

very costly, in terms of initial capital cost, running cost, hardware and software

maintenance, etc.

Other efficient parallel computer systems are the application specific hardware

implementation, which offer much greater speed than a software

implementation and some types of parallel computers. With advances in the

VLSI (Very Large Scale Integrated) technology, hardware implementation has

become an attractive alternative. Implementing complex computation tasks on

hardware and by exploiting parallelism and pipelining in algorithms yield

significant reduction in execution times. But, using such types of parallel

computers or dedicated hardware are not always cost-effective, and can not be

provided for all our needs.

The use of heterogeneous collections of computing systems interconnected by

one or more networks as a single logical computational resource has become

a wide-spread approach to high-performance parallel computing. As an

example of such cost-effective computing systems is the LAN-based computer

system. The LAN-based parallel computer systems allow individual applications

to harness the aggregate power of the increasingly powerful, well-networked,

heterogeneous, and often largely under-utilized collections of resources

available to many users [Fer 98].

www.manaraa.com

12

1.6. Data Communication Libraries for LAN-Based

Systems

In order to be able to efficiently and effectively use LAN-based systems to

perform parallel (distributed) computations, it is important to have an adequate

and a reliable distributed program development toolset, which can support the

programming of multiprocessors application using familiar development

environments and standard languages.

Numerous software systems that have been developed to support some form

of network parallel computing, the majority of them are based on a small set of

popular packages that provide an explicit message-passing for distributed

memory MIMD computer systems, such as the Parallel Virtual Machine (PVM),

and the Message Passing Interface (MPI). These software systems support

simple, portable library interfaces for typical high-performance computing

languages such as C and FORTRAN [Lee 99, Fer 98].

The PVM provides the programmer with library routines to perform task

creation, data marshalling, and asynchronous message passing. In addition,

the PVM provides tools for specifying and managing a collection of hosts on

which applications will be executed.

More recently, a new toolset based on Java language is developed; therefore,

it is called Java Parallel Virtual Machine (JPVM). This is because Java provides

a number of features that appear to be promising tools for addressing some of

the inherent problems associated with network parallel programming. For

example, Java provides a portable uniform interface to threads. Using threads

instead of traditional heavyweight processes has been found to be an avenue

for increasing latency tolerance and allowing finer-grained computations to

achieve good performance in distributed memory parallel processing

environments. Java supports a high degree of code portability and a uniform

API for operating system services such as network communications [Fer 98].

www.manaraa.com

13

The JPVM library supports an interface similar to the C and FORTRAN

interfaces provided by the PVM system, but with syntax and semantics

enhancements afforded by Java and better matched to Java programming

styles. The similarity between JPVM and the widely used PVM system supports

a quick learning curve for experienced PVM programmers, thus making the

JPVM system an accessible, low-investment target for migrating parallel

applications to the Java platform. At the same time, the JPVM offers novel

features not found in standard PVM such as thread safety, multiple

communication end-points per task, and default-case direct message routing.

The JPVM is implemented entirely in Java, and is thus highly portable among

platforms supporting some version of the Java Virtual Machine (JVM). This

feature opens up the possibility of utilizing resources commonly excluded from

network parallel computing systems such as Macintosh and Windows-NT

based systems [Fer 98].

1.7. Methodologies for Distributed Programming

Distributed programming is the design, implementation, and tuning of

distributed computer programs to take advantage of distributed computing

systems. Distributed programming focuses on partitioning the overall problem

into separate tasks (processes and data), allocating tasks to processors and

synchronizing the tasks to get meaningful results. Distributed programming can

only be applied efficiently to problems that are inherently distributable, mostly

without data dependence.

There are two major approaches to distributed programming: implicit, where the

system (the compiler or some other program) partitions the problem and

allocates tasks to processors automatically; or explicit, where the programmer

must themselves suggest and implement the partitioning method for the

problem [Sil 99].

For most applications, there are three common broad models, which may be

considered in modelling physical systems on distributed memory MIMD

computer systems [Sil 99]. The strategies are:

www.manaraa.com

14

(1) Arithmetic or algebraic model

(2) Geometric model

(3) Event or processor-farm model

(1) Arithmetic or algebraic model

Here the whole algorithm is split into a number of sections, each of which is

assigned to one processor, but data relating the whole system flows through

each processor like a production line. Thus, elaborate communication is

required in transferring the data from one processor to another.

(2) Geometric model

In this model, each processor executes more or less the same program but

here the data is distributed in a manner which requires extensive

communication between the processors, for example, each processor might be

used to simulate one part or more of a large system of similar objects interacting

with each other.

 (3) Event or processor-farm model

This may be considered as the simplest model in which each processor

executes the same program independently from all other processors, each

operates on a different part of the total data. Therefore, this model is mostly

suitable for applications where the same process has to be applied to a number

of independent data sets.

The processor-farm model is very simple since it allows exactly the same serial

program to be implemented, assuming that enough memory is available to

accommodate the whole program on each processor. In addition, the farming

strategy is the most efficient model which can be used in concurrently running

image processing applications. This is because, by using this strategy, no

interprocessor communication is required other than that involved in forwarding

data/results to and from the processors, once for all at the beginning and the

end of the computation.

www.manaraa.com

15

1.8. Statement of the Problem

It has been well recognized that distributed computations are the most efficient

solution to speedup the resource (processing time and memory) demanding

image processing applications. LAN-based computer systems, which can be

classified as distributed MIMD (loosely-coupled) computer systems, are

considered as the most cost-effective systems. However, the performance of

such systems depends on the parallel methodology that is used in

implementing the application on the distributed machine.

The main objective of this work is to develop and evaluate the performance of

a distributed image processing (DIP) model that utilizes a LAN-Based computer

system. The DIP model is implemented to speedup the extensive image

processing computations of noise reduction (median filters based on

convolution function) and edge detection (Sobel algorithm) in distorted,

continuously feed-in, images.

The objectives of this work can be summarized as follows:

(1) Develop a serial research level code for edge detection in distorted

images using Sobel algorithm. In order to increase the edge detection

accuracy of the algorithm, the input images are pre-processed for noise

reduction or removal (image enhancement) using median filter, which

is based on convolution function of different sizes (e.g., 3x3 and 5x5).

(2) Develop a DIP model, which is based on the processor-farm

methodology, in which each processor executes the same program

independently from all other processors, each operates on a different

part of the total data.

(3) Develop a distributed or parallel version of the code to accommodate

the processor-farm parallel methodology to run the code efficiently on

a LAN-based system using the JPVM as parallel environment.

www.manaraa.com

16

(4) Evaluate speedup factor, parallelization efficiency, and image

processing rate achieved by the DIP model over LAN-based system

consisting for the pre-described image processing application.

(5) Investigate the effect of number of parameters, such as: number of

PCs forming the system, number of images allocated to each PC, size

of image, size of convolution function (3x3, 5x5), on the system

performance.

(6) Demonstrate how to estimate, for certain problem size, the optimum

number of processors that can be used.

1.9.Organization of the thesis

This chapter presents an introduction to the main topics, objectives, and

outcome of this thesis. Chapter 2 presents a literature review that summarizes

the most recent and related work. It is presented in two sections. Section 2.1

reviews a number of parallel and distributed models for image processing

applications running on a variety of parallel and distributed system

architectures. Section 2.2 reviews a number of parallel and distributed models

running on LAN-based computer systems.

Chapter 3 provides a detail description of the proposed distributed image

processing (DIP) model, the parallel programming methodologies in use, and

the criteria that are used in developing this model. This chapter also describes

in details the image processing application considered in this thesis, which

includes the edge detection algorithm, namely, Sobel algorithm, and the noise

reduction or removal techniques, namely, the median filter that is based on the

convolution function.

Chapter 4 is devoted to present some results to evaluate the performance that

can be achieved over a LAN-based system consisting of n PCs connected

through an Ethernet 10/100 Mbps switch. The performance is measured in

www.manaraa.com

17

 terms of the speedup factor (S), parallelization efficiency (E), the image

processing rate (). The results obtained are discussed and presented in tables

and/or graphs as appropriate. Finally, in Chapter 5, conclusions are drawn and

recommendations for future work are pointed-out.

www.manaraa.com

18

Chapter Two
Literatures Review

Image processing applications are time and storage demanding applications,

therefore, the implementation of image processing applications on parallel and

distributed computer architectures has been an area of extensive research for

the last three decades. Consequently, there are a number of techniques that

have been developed to speedup such time-consuming computations. Most

models are developed to run efficiently on advanced, dedicated, and expensive

distributed computer architectures. However, more recently, with the enormous

advancement in computer networks technology and protocols, many projects

have been directed towards the implementation of more general-purpose cost-

effective systems, namely, the LAN-Based systems for image processing

applications.

In this chapter, we review some of the most recent and related work. This

chapter is divided into two sections. Section 2.1 reviews number of parallel and

distributed models for image processing applications on different types of

parallel computer architectures. Section 2.2 is dedicated for parallel and

distributed models that run on LAN-Based systems.

2.1 Parallel and Distributed Models for Image
Processing Applications

L. Baumstark and L. Wills [Bau 02] presented a technique for extracting the

two-dimensional spatial data dependencies from C image filtering source code.

A key insight gained by looking at the image filtering programs is that extracting

these spatial data dependencies is the critical and most difficult step; often, the

core filtering computation that is applied to each neighborhood of pixels can be

directly transferred over to the data parallel code unchanged. Based on this

insight, their strategy was to first focus on identifying two-dimensional data

reference patterns in the source code and later apply different analysis

techniques (as needed) to the core filtering computation.

www.manaraa.com

19

Baumstark and Wills developed a reverse engineering technique to image

filtering code from a commercial library originally written for the Texas

Instruments TMS320C62xx family of digital signal processors. The technique

was applied to common image filtering algorithms. The results obtained from

this technique were validated by retargeting to a MATLAB program and

matching the results against those of the original source.

H. Fatemi et. al. [Fat 04] presented and evaluated a method for introducing

parallelism into an image processing application. The method is based on

algorithmic skeletons for low, medium and high level image processing

operations. They provided an easy-to-use parallel programming interface.

Fatemi et. al. approach identified number of skeletons for parallel processing of

low-level, intermediate-level and high-level image processing operations. Each

skeleton can be executed on a set of processors. From this set of processors,

a host processor is selected to split and distribute the image to the other

processors. The other processors from the set receive a part of the image and

the image operation which should be applied to it. Then the computation takes

place and the result is sent back to the host processor. The programmer of the

application should only select the skeleton from the library and gives the

appropriate operation as a parameter.

To evaluate their approach, face recognition was implemented twice on a highly

parallel processing platform, namely, the IMAP-board, once via skeletons, once

directly and highly optimized. It was demonstrated that the skeleton approach

is extremely convenient from a programmer’s point of view, while the

performance penalty of using skeletons is well below 10% in their case study.

W. Caarls et. al. [Caa 05] thought that developing embedded parallel image

processing applications is usually a very hardware-dependent process,

requiring deep knowledge of the processors used. In addition, image

processing application consists of number of operations surrounded by control

flow constructs, and it’s important to run these operations concurrently. For this,

they designed asynchronous Remote Procedure Call (RPC) system to exploit

www.manaraa.com

21

 low-level image processing operation task-level parallelism to be used for

algorithmic skeletons. The system was programmed in C language, divided into

number of image processing operations, and applied these using function calls.

Caarls et. al. implemented a double threshold edge detection algorithm on a

prototype architecture consisting of XETAL 16 MHz 320-PE SIMD processor

and a TriMedia 180 MHz 5-issue VLIW processor. The result showed that the

overhead of running the RPC system is around 8%, but decreasing processing

time about 42%. Their result also showed that the system can achieve a

significant speedup by using SIMD processor for low-level vision processing.

H. Kelash et. al. [Kel 05] presented parallel processing using multi-agent

system which can be structured into application interface that allows to call

particular operators or to pass image processing operation for parallelization.

In their system, each agent has a very simple behavior which allows it to take

a decision such as find out an edge, or region, etc., according to its position in

the image and to the information enclosed in it. The system provides an

environment for developing and processing image operations within distributed

system. Data parallelism was implanted in this system, where all Processing

Elements (PEs) receive commands from a central control processor. The

system uses the CxC language, and applies Sobel and Laplace operators using

different data which can be parallelized using array controller of processors

where one processor associated with one pixel. They compared between their

multi-agent system and the sequential execution using MATLAB. They found

that the speedup factor is increasing when using multi-agent system as the size

of images increases.

D. V. Rao et. al. [Rao 06] addressed the implementation of image processing

algorithms such as: image filtering, image smoothing and edge detection on

Field Programmable Gate Array (FPGA) using Handle-C language which is a

C-based language that can provide direct implementation of hardware from the

C-based language description of the system. The design was implemented on

RC1000-PP Xilinx Vertex-E FPGA based hardware. The results from this

design used operations for the image processing algorithms on a 256x256 size

www.manaraa.com

21

grayscale of Lena image show that the speed of this FPGA solution for the

image processing algorithms was approximately 15 times faster than the

software implementation in C language.

F. Schurz and D. Fey [Sch 07] presented a parallel processor architecture

based on small Processing Elements (PEs) in a Field Programmable Gate

Array (FPGA). Their architecture is able to detect and process multiple

separated objects simultaneously in image which is divided into partitions and

handled one by one to keep the whole design small. The architecture is using

SIMD approach, which means that the same operations are carried out in

parallel on each image pixel. The PEs in this design are connected through a

NEWS network and controlled by a central unit. Their design is programmable

using assembler language. This approach designed to be small and cheap and

fast possibility for industrial image processing. The results for this design, in a

VGA resolution approximately one and half million clocks, were used and 66

images can be processed at 100 MHz, which leads to a performance of 20

MPixel/s.

F. Baldacci and P. Desbarats [Bal 08] presented a parallel algorithm for 3D split

and merge segmentation using topological and structuring with an Oriented

Boundary Graph image processing. The researchers used multiprocessor

systems and Non Uniform Memory Access (NUMA) architecture. The algorithm

was tested in two machines. First machine was equipped with two Intel Xeon

Quad core at 2,33 GHz, and the other was equipped with eight AMD Opteron

Dual core at 1,8 GHz with NUMA architecture. They used two medical images

in test: one image with size 256x256x256 voxels and the other with

512x512x475 ovxels size. The goal of the approach was to reduce the split and

merge operations computation time. The results studied the execution time and

showed that the NUMA architecture was two time slower than the other one,

and using sixteen threads was slower than using eight threads.

www.manaraa.com

22

2.2 .Parallel and Distributed Models Running on

LAN-Based Systems

A. Bevilacqua [Bev 99] introduced a model to obtained efficient load balancing

for data parallel applications based on dynamic data assignment running on a

heterogeneous cluster of workstations. The model was referred to the working-

manager model. The aim of the model was to maximize the performance of the

loosely coupled parallel systems. It is essential to minimize the idle time of each

process and ensure the balancing of processes workload.

 The cluster used consists of four workstations, connected to a LAN by a

100Mbit Ethernet, except for workstation 3, the amounts was 10Mbit adapter.

The workstations hardware consists of the following:

 Workstation 1: SMP system: 2 PII 400MHz, 512 MB.

 Workstation 2: SMP system: 2 PPro 200MHz, 128 MB.

 Workstation 3: AMD K6-3D, 300MHz, 64 MB.

 Workstation 4: DEC AXP 4/200, 200MHz, 256 MB.

The operating system used Linux 2.0 for all workstations except for AXP that

comes with its native OSF/1, and PVM is the communication library. The gcc

and the C compiler were used in the model. The results showed that the

efficiency was over 90%.

J. A. Gallud et. al. [Gal 99] presented a workbench called Distributed

Processing Of Remotely Sensed Imagery (DIPORSI). It was developed to

provide a framework for the distributed processing of Landsat images using a

cluster of NT workstations connected by Ethernet network using the Message

Passing Interface (MPI) standard.

The distributed machine in their model is composed of the 8 P II 333 MHz with

32 MB of RAM running windows NT Workstation v4.0, and the nodes were

linked using a 10 Mbps Ethernet. The time in the distributed algorithm was

www.manaraa.com

23

 compared with the time in the sequential algorithm. The results showed that

the reduction of the execution time in distributed algorithm over 400% for a

moderate number of nodes. The results also showed that a near linear speedup

for large image size can be achieved.

H. S. Bhatt et. al. [Bha 00] developed an environment over a network of

VAX/AMS and UNIX for distributed image processing. They presented a

WebDedip, which is redesigned and generalization of Development

Environment for Distributed Image Processing (DEDIP) to make it more user

friendly and truly heterogeneous, using Java and web technology. The model

uses three-tier architecture instead of master-slave one. The WebDedip has

three tier architecture: GUI, Dedip Server and agents.

The functionality and efficiency of the WebDedip was tested using Microsoft NT

as host and IRIS workstations as a slave. IIS 4 was used as a web server and

the front-end GUI was tested on two most popular browsers IE and Netscape.

The model was used by 15 scientists for development and operationalization of

10 distributed image processing applications for Indian Remote Sensing (IRS)

satellite. The efficiency was as high as 90-95%. The page and applet loading

time over the network was excluded and the communication delay over the

network was the additional delay.

C. Nicolescu and P. Jonker [Nic 02] presented a data and task parallel low-level

image processing environment for distributed memory system. They designed

an approach of adding data and task parallelism to an image processing library

using algorithmic skeletons and the Image Application Task Graph (IATG). In

their approach, the authors allowed the application to be implemented in a C

programming environment and allowed the possibility to use and implement

different scheduling algorithms for obtaining the minimum execution time.

Nicolescu and Jonker presented a data parallel paradigm with the host/node

approach for image processing operations where the host processor is selected

for splitting and distributing the data to the other nodes and the host also

www.manaraa.com

24

 processes a part of the image then each node processes its received part of

the image and then the host gathers the image back together. The authors use

a distributed system which consists of a cluster of Pentium Pro/200 MHz PCs

with 64Mb RAM running Linux, and connected through Myrinet in a three-

dimensional (3D)-mesh topology with dimension order routing.

The code was written using C and MPI message passing library and the multi-

baseline stereo vision algorithm is an example used in their system. They

compared the speedup for different image sizes in data parallel approach and

the speedup of the same application using the data and task parallel approach

also for different image sizes. The speedup in data and task parallel approach

was more efficient than the speedup in data parallel approach.

Z. Qiu et. al. [Qiu 02] developed fast parallel stereo matching parallel algorithm

on home-based software DSM JIAJIA. A cluster of eight Pentium II PCs

connected by a 100 Mbps switched Ethernet are using in there design. The

stereo images were divided into eight parts. Each PC carried out the matching

task of one parts of stereo image. The results showed that when two PCs were

used the speedup ratio is 1.8. When four PCs were used, the speedup ratio is

3.7. When eight PCs were used, the speedup ratio is 7.5. The speedup ratio is

near the ideal linearity speedup ratio. The speedup of finding corresponding

points reaches 3200 pair/second, when eight PCs were used.

J. O’Connell and P. Caccetta [Con 05] presented an algorithm used for time

series classification of remotely sensed image data which is spatial/temporal

algorithm. Their approach used homogeneous and heterogeneous clusters of

computers for reducing computational time using the MPI standard library.

The parallel algorithm distributes each line of the input probability images to a

number of slave nodes with I/O performed by one master node. Slave nodes

then perform the necessary LS processing tasks and send the output back to

the master. The parallel algorithm implemented on two clusters, an ad hoc

cluster and the dedicated cluster. The ad hoc cluster used 13 office Wintel

www.manaraa.com

25

 machines. All machines were Pentium 4 between 1.6 GHz and 3.6 GHz and of

signal dual and quad CPU connected via 100 Mbit Ethernet. The MPICH

implementation was used in this cluster. The results showed that the efficiency

in an ad hoc cluster at least 67% in homogenous CPUs, but the efficiency in

the dedicated cluster was about 86.2% (speedup 7.76) in 9 CPU, and 85.43%

(speedup 41.86) in 49 CPU.

A. Clematis et. al. [Cle 06] presented an approach for high performance legacy

code in a grid-oriented environment. In particular, they presented PIMA(GE)2

Parallel IMAGE processing GEnova server obtained a legacy code parallel

library. The parallel server was implemented by using CORBA and integrated

in Grid architecture. The goal of the approach was reuse of a parallel image

processing library in a heterogeneous environment obtained a high level of

flexibility to developed client server image processing applications.

The approach implemented using a C++/MPI-2 parallel library to be used in

distributed environment. The application used was the detection of linear

structure in an image. They authors used a Linux cluster with eight nodes

interconnected by a Gigabit switched Ethernet, and each node processor was

a 2.66 GHz Pentium, 512 Mbytes of RAM and two EIDE disks interface in RAID

0. They compared between library functions and the PIMA(GE)2, and the

results showed that the variation of the speedup was around 1.3%.

A. K. Manjunathachari and K. SatyaPrasad [Man 06] designed approach to

solve the convolution filter by using Simultaneous Multi-Threading (SMT),

Processing Buffer (PB), and simulated in a standard LAN environment. Their

approach presented a method to the bifurcation of image processing application

into three fundamental layers (resource layer, linking layer and application

layer) which are isolated based on processor requirements and their

functionality. The parallelism was enhanced by adding the concepts of SMT

over the processor for redundancy the transition delay in parallel computing

image processing application. Results showed that for a large number of

processing units, speedup is close to linear, and also speedup characteristics

were identical when the same number of templates was used in the matching

process.

www.manaraa.com

26

The approach used two different implementation methods for parallel image

convolution. The first method was the direct convolution method which has less

communication load than the other method, which was 2D Fast Fourier

Transform (FFT) in a Fourier domain. Direct convolution method’s scalability

slightly decreased as kernel size got smaller but hardly affected by image size.

The other method’s scalability decreased as image size got smaller and never

affected by kernel size.

A. Plaza et. al. [Pla 06] presented a parallel exploitation-based algorithm for

onboard data hyperspectral data compression. In their model, three different

parallel computing platforms were used for demonstration purposes: a Beowulf

cluster made up of 256 processors at NASA’s Goddard Space Flight Center, a

heterogeneous network of 16 distributed workstations at University of Maryland,

and a Xilinx Virtex-II FPGA.

In their model, they implemented many parallel algorithms such as: parallel

unsupervised fully constrained least squares (P-UFCLS) algorithm, parallel

iterative error analysis (P-IEA) algorithm, parallel pixel purity index (P-PPI)

algorithm, parallel N-FINDR algorithm and parallel algorithm for data

compression P-FINDR/P-LSU (Linear Spectral Unmixing) compression

algorithm which was implemented using FPGA hardware.

The results demonstrated that massively parallel Beowulf clusters and low-cost

heterogeneous networks of workstations offer an unprecedented opportunity to

explore methodologies in data mining that looked to be too computationally

intensive due to the immense volumes of information in remote sensing

databases. To address the real-time computational requirements introduced by

many applications, the authors had also developed an FPGA-based algorithm

for onboard, hyperspectral data compression.

A. Paz et. al. [Paz 08] developed several parallel algorithms for target detection

in hyper-spectral imagery. They developed four algorithms for target and

anomaly detection in hyper-spectral images, these algorithms are: the

www.manaraa.com

27

 Automatic Target Generation Process (ATGP), an Unsupervised Fully-

Constrained Least Squares (UFCLS) algorithm, an Iterative Error Analysis

(IEA) algorithm, and RX algorithm which developed by Reed and Xiaoli for

anomaly detection. The problem in these algorithms were computational very

expensive. The authors solved the computational problem by developed four

computationally efficient parallel implementations, a parallel ATGP (P-ATGP)

algorithm, a parallel UFCLS (P-UFCLS) algorithm, a parallel anomaly detector

(P-RXD) and a parallel MORPHological target detection algorithm (P-MORPH).

In all algorithms they used a data-driven partition strategy tested on a hyper-

spectral image scene collected by the AVIRIS instrument.

The full data in the experiment consists of 2133x512 pixels, 224 spectral bands

and total size about 900 Mbytes. The authors used a single processor of a

Beowulf cluster with 256 processors called Thunderhead and available at

NASA’s Goddard Space Flight Center. The results showed that the computation

time of the parallel algorithms was more efficient of the computation time in

sequential algorithms.

www.manaraa.com

28

Chapter Three
The Proposed Distributed Image Processing (DIP)

Model

In the last few decades there has been an impressive gain in computer

performance, due not only to advances in hardware, but also to innovations in

computer architecture (i.e., how the computer is designed and organized to

perform its computational tasks) [Gra 02, and Ste 06]. The later reason leads

to the emergent of extremely fast but expensive computing systems, which are

recognized as supercomputers or parallel computers. In addition, as it was

discussed in Chapter 1 that a powerful cost-effective parallel (distributed)

computing system can be established by utilizing a number of Personal

Computers (PCs) connected in a Local Area Network (LAN). This is of course

subject to having an efficient message passing data communication library.

The performance of a LAN-based computer system depends on a number of

factors, these include:

(1) Number of PCs used to perform the computational task concurrently.

(2) Speed of each individual PC within the network.

(3) Speed of the communication channels.

(4) Efficiency of the message passing library.

(5) Parallel programming model that is used in porting the computational

task to the parallel system.

Image processing applications (e.g., edge detection in noisy images) are

characterized as time consuming and memory demanding applications [Kel 05].

Fortunately, for many image processing applications, a LAN-based system can

provide an efficient and cost-effective solution.

This chapter presents a description of a distributed image processing (DIP)

model to speedup image processing computations by efficiently utilizing the

relatively high computational power of a LAN-based system. The system uses

www.manaraa.com

29

 the professional Java Parallel Virtual Machine (JPVM) for message passing

between processors. The DIP model is based on the simple processor farm

methodology that was briefly introduced Chapter 1.

The rest of chapter is organized as follows. The image processing application

considered in this thesis is described in Section 3.1. The parallel programming

methodology, in particular the concept, issues, and features of the event or

processor-farm model are discussed in Section 3.2. Section 3.3, presents a

detail description of the proposed DIP model. The main characteristics of data

communication libraries in use for message passing in LAN-based systems,

namely the PVM and the JPVM libraries are given in Section 3.4. Section 3.5

outlines the implementation of the DIP model using the JPVM library. Finally, in

Section 3.6, the parameters (e.g., speedup factor (S), parallelization efficiency

(E), and image processing rate ()) that are used to evaluate the performance

of the DIP model running on a LAN-based system are defined.

3.1 Image Processing Application

Edge detection in noisy images is a typical image processing application. It is

one of the most important steps in image processing, analysis, and pattern

recognition system [Civ 04]. Number of techniques have been developed for

accurate edge detection, such as Canny algorithm, Sobel algorithm, etc. The

main challenge for accurate and efficient edge detection is the presence of

noise in images. In order to enhance the performance of such edge detection

techniques, it is important, first, to reduce or ultimately remove noise from

images before carrying on the edge detection process.

This thesis is concerned with the development of image processing application

that performs edge detection in images distorted with impulsive noise (noisy

images). Both noise reduction and edge detection algorithms used in this work

are based on a simple mathematical function, it is the convolution function.

Therefore, in this section, before proceeding with the description of the image

processing application, a brief introduction is given for the convolution function.

www.manaraa.com

31

3.1.1. Convolution Function

Convolution is a simple mathematical operation which is fundamental to many

common image processing operators. It involves a multiplication of two arrays

of numbers, generally of different sizes, but of the same dimensionality, to

produce a third array of numbers of the same dimensionality. It is used in image

processing to implement operators whose output pixel values are simple linear

combinations of certain input pixel values.

In an image processing context, one of the input arrays is normally just a grey

level image. The second array is usually much smaller, and is also two

dimensional (although it may be just a single pixel thick), and is known as the

kernel. The kernel array could be in different size to get different results; the

kernel may be 3×3 or 5×5 or 7×7 size of neighborhood. If the image has M rows

and N columns, and the kernel has m rows and n columns then the convolution

function is written as [Fis 94]:

    
1 1

(,) 1, 1 ,
m n

k l

H i j G i k j l K k l
 

      (3.1)

Where i runs from 1 to M-m+1 and j runs from 1 to N-n+1. The function moves

the kernel K through the image G pixel by pixel, at each point the overlapping

pixels in the image and kernel arrays are multiplied and then summed to get

new value for the pixel.

Note that many implementations of convolution produce a larger output image

than this because they relax the constraint that the kernel can only be moved

to positions where it fits entirely within the image. Instead, these

implementations typically slide the kernel to all positions where just the top left

corner of the kernel is within the image. Therefore the kernel overlaps the image

on the bottom and right edges. One advantage of this approach is that the

output image is the same size as the input image. Unfortunately, in order to

calculate the output pixel values for the bottom and right edges of the image, it

is necessary to invent input pixel values for places where the kernel extends off

the end of the image.

www.manaraa.com

31

Typically, pixel values of zero are chosen for regions outside the true image,

but this can often distort the output image at these places. Therefore in general

if you are using a convolution implementation that does this, it is better to clip

the image to remove these spurious regions. Removing n-1 pixels from the right

hand side and m-1 pixels from the bottom will fix things.

Convolution filter is a very complex operation that requires huge computation

power. To calculate a pixel for a given kernel or mask of 3x3 there are 9

multiplications per image pixel, if the input image is 1024×1024 and the kernel

is 3×3 the convolution filter need about 9 million multiplications to apply this

filter in image, for this convolution filter is very slow algorithm and take long time

to execution. Figure (3.1) shows how to apply the convolution function for 3×3

mask on an input image with M height and N width.

Figure (3.1) – Applying the convolution function.

3.1.2 .Edge Detection

Edge detection is the most important process in image processing, which is

used in analysis and pattern recognition systems. Its importance arises from

www.manaraa.com

32

 the fact that edges often provide an indication of the physical extent of objects

within the image. The result of edge detection is edge map that contains

important information about the objects in image [Civ 04].

Edge detection techniques

There are different techniques that can be used efficiently for edge detection.

These techniques can be grouped into two main categories; these are [Mai 06,

Civ 04]:

 Gradient edge detection: detects the edges by looking for the maximum

and minimum in the first derivative of the image. This technique

sometimes known as search-based methods.

 Laplacian edge detection: Known as zero-crossing based methods. This

method searches for zero-crossings in the second derivative of the

image in order to find edges.

In what follows, a brief description is given for the most widely used techniques,

namely, the Canny and Sobel edge detection techniques as an example of

gradient edge detection techniques and the Laplacian edge detection technique

as an example indicated by its name.

(1) Canny edge detection technique

The Canny edge detection is kind of gradient edge detection. It could be

considered as a standard method and it is used in many researches, because

it provides very sharp and thin edges. Canny edge detection works in a multi-

stage process, uses linear filtering with a Gaussian kernel to smooth noise and

then computes the edge strength and direction for each pixel in the smoothed

image [Roa 06].

(2) Sobel edge detection technique

The Sobel operator is one of the most commonly used edge detectors. Sobel

operator performs a 2-D spatial gradient measurement on an image.

www.manaraa.com

33

The operator consists of a pair of nxn convolution kernels, one estimating the

gradient in the columns and the other estimating the gradient in the rows. It has

one disadvantage which is a slower method than other edge detection

operators because its use convolution function which is time consuming.

In this work, the Sobel edge detection technique is used for edge detection in

noisy images. Figure (3.2) shows the results obtained from applying the Sobel

edge detection techniques for the Standard Lena image.

 (a) (b)

Figure (3.2) – Sobel edge detection. (a) Original image. (b) Sobel edge

detection.

The Sobel operator is one of the most commonly used edge detectors [Wil 99].

It performs a two-dimensional (2-D) spatial gradient measurement on an image.

The operator consists of a pair of 3×3 convolution kernels, one estimating the

gradient in the columns (vertical) and the other estimating the gradient in the

rows (horizontal) as show in Figure (3.3). The Sobel operator has one

disadvantage which is a slower method than other edge detection operators

because it uses convolution function which is time consuming [Fis 03].

http://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm

www.manaraa.com

34

Figure (3.3): Soble operators (Gx: vertical direction and Gy: horizontal

direction).

The two operators can be combined together to find the absolute magnitude of

the gradient in edge at each point and the orientation of that gradient. The

gradient magnitude is given by [Fis 03]:

2 2

x yG G G  (3.2)

1tan
y

x

G

G
   
  

 
 (3.3)

Where Gx is the gradient in the vertical direction, Gy is the gradient in the

horizontal direction, |G| is the absolute magnitude of the gradient, and is the

orientation of the gradient.

(3) Laplacian edge detection technique

The Laplace local image operator is one of the simplest edge detection

algorithms in the field of image processing. An edge is made visible by using a

neighbor’s pixel value to suppress its own one [Kel 05].

www.manaraa.com

35

3.1.3.Noise Reduction

Two dimensions convolution filter is usually used in edge detection and noise

reduction applications. There are many filters used convolution function to

remove the noise in image, such as, mean filter, median filter and Gaussian

filter. The most common filters that are used for noise reduction are [Met 00]:

(1) Mean filter

(2) Median filter.

They both use convolution function for noise reduction in images, like Gaussian

noise and impulse noise.

(1) Mean filter

Mean filter or average filter is the simplest linear spatial filter that is used for

noise reduction in images. This is a low pass filter, which removes high spatial

frequencies from an image and is also good at reducing Gaussian noise present

in an image. Mean filter works by replacing each pixel value in an image with

the mean or average value of the neighbors of the pixel and the pixel itself.

Mean filter use convolution function with usually 3×3 kernel which the size of

the neighborhoods. The mean filters are good at removing Gaussian noise but

this type of filter blur the edges in the image [Met 00].

(2) Median filter

Median filter is a non-linear spatial filter. The median filter is calculated by

sorting all the pixel values from the surrounding neighborhood into numerical

order and then setting the center pixel to the middle pixel value. A median filter

is a very effective in removing impulse noise in images and it also does a better

job than the mean filter at preserving edges within an image. Median filter is

very widely used in image and video processing applications [Met 00].

www.manaraa.com

36

The median filter has two main advantages over the mean filter [Fis 94]:

i. The median is a more robust average than the mean and so a single

very unrepresentative pixel in a neighborhood will not affect the median

value significantly.

ii. The median value must actually be the value of one of the pixels in the

neighborhood; the median filter does not create new unrealistic pixel

values when the filter straddles an edge. For this reason the median filter

is much better at preserving sharp edges than the mean filter.

The main problem of the median filter is its high computational cost, because

sorting p pixels the time complexity is O(p log p) [Roa 06]. However, in this work

the median filter with convolution operator will be used for noise reduction in

images. Figure (3.4) shows the example of median filter with mask of 3×3 of

size of neighborhood pixels.

Figure (3.4) - Median filter.

3.1.4.Noise in Digital Images

Real world signals usually contain departures from the ideal signal that would

be produced by the model of the signal production process. Such departures

are referred to as noise. Noise arises as a result of unmodeled or unmodelable

processes during the production and capture of the real signal. It is not part of

www.manaraa.com

37

 the ideal signal and may be caused by a wide range of sources, e.g. variations

in the detector sensitivity, environmental variations, the discrete nature of

radiation, transmission or quantization errors, etc. It is also possible to treat

irrelevant scene details as if they are image noise (e.g. surface reflectance

textures). The characteristics of noise depend on its source or on the noise

production operator [Mai 06].

Many image processing packages contain operators to artificially add noise to

an image. Deliberately corrupting an image with noise allows us to test the

resistance of an image processing operator to noise and assess the

performance of various noise filters [Gon 02].

Noise can generally be grouped into two classes:

 Image independent noise.

 Image dependent noise.

Image independent noise can often be described by an additive noise model,

where the recorded image g(i,j) is the sum of the true image s(i,j) and the noise

(i,j):

 (,) (,) (,)g i j s i j i j  (3.4)

The noise (i,j) is often zero-mean and described by its variance 2

n . The

impact of the noise on the image is often described by the Signal-to-Noise Ratio

(SNR):

2

2
1s f

n n

SNR
 

 
   (3.5)

Where 2

s and 2

f are the variances of the true and the recorded images,

respectively.

In many cases, additive noise is evenly distributed over the frequency domain

(i.e. white noise), whereas an image contains mostly low frequency information.

www.manaraa.com

38

 Hence, the noise is dominant for high frequencies and its effects can be

reduced using some kind of low-pass filter. This can be done either with a

frequency filter or with a spatial filter. Often a spatial filter is preferable, as it is

computationally less expensive than a frequency filter.

In the second case of image data-dependent noise (e.g., arising when

monochromatic radiation is scattered from a surface whose roughness is of the

order of a wavelength, causing wave interference which results in image

speckle), it is possible to model noise with a multiplicative or non-linear model.

These models are mathematically more complicated; hence, if possible, the

noise is assumed to be data independent.

Noise detector

One kind of noise which occurs in all recorded images to a certain extent is

detector noise. This kind of noise is due to the discrete nature of radiation, i.e.

the fact that each imaging system is recording an image by counting photons.

Allowing some assumptions (which are valid for many applications) this noise

can be modelled with an independent, additive model, where the noise (i,j)

has a zero-mean Gaussian distribution described by its standard deviation

(2

n), or variance. This means that each pixel in the noisy image is the sum of

the true pixel value and a random Gaussian distributed noise value

Types of noise

There are many common types of noise in image, such as [Gon 02]:

(1) Gaussian noise.

(2) Impulse noise.

(1) Gaussian noise

Gaussian noise is also known as additive noise or Gaussian additive noise. It

is usually introduced during image acquisition. An amount of noise is added to

every part of the image. Each pixel in the image will be changed from its original

http://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm

www.manaraa.com

39

 value. Additive Gaussian noise is characterized by adding to each image pixel

a value from a zero-mean Gaussian distribution, this means that each pixel in

the noisy image is the sum of the true pixel value and a random, Gaussian

distributed noise value [Mai 06]. The Gaussian noise can be removed using

mean filter usually with 3x3 mask, but mean filter blur the edges and details in

images.

(2) Impulse noise

Impulse noise (salt and pepper noise) is a special type of noise caused by errors

in data transmission, acquisition, in processing in images. The corrupted pixels

are either set to the maximum values, which show as a snow in image, or the

single pixels set to zero value, giving the image a salt and pepper like

appearance [Mai 06]. Impulse noise also known as random noise or

independent noise defining characteristic is that the color of a noisy pixel bears

no relation to the color of surrounding pixels. Figure (3.5) shows the effect of

impulse noise in color images. Nonlinear filter such as median filter is the most

common filter used to reduce the impulse noise in images as shown in Figure

(3.6).

 (a) (b)

Figure (3.5) – Impulse noise. (a) Original image. (b) Add impulse noise to

image [Mat 04].

www.manaraa.com

41

 (a) (b)

Figure (3.6) –Reduction impulse noise. (a) Image corrupted by impulse noise.

(b) Noise reduction using median filter with 3×3 sizes of neighborhoods of

pixels.

3.2 .Parallel Programming Methodologies

Chapter 1 discussed three different explicit distributed (i.e., parallel)

programming methodologies, theses are:

(4) Arithmetic or algebraic model

(5) Geometric model

(6) Event or processor-farm model

This work utilizes the third model, the event or processor-farm model, to

develop an efficient distributed image processing model. The concept, issues,

and features of this model are discussed below.

3.2.1 .Processor Farm Parallelism

One paradigm that is commonly used on multiprocessors is the processor-farm

paradigm, in which each processor executes almost the same program

independently from all other processors, each operates on a different part of

www.manaraa.com

41

the total data [Wag 97]. The processor-farm (also called task-farming or master-

slave) paradigm consists of two entities: master and multiple slaves. The

master is responsible for decomposing the problem into small tasks (and

distributes these tasks among a farm of slave processes), as well as for

gathering the partial results, which is run independently, in order to produce the

final result of the computation. The slave processes execute in a very simple

cycle: get a message with the task, process the task, and send the result to the

master. Therefore, the communication takes place only between the master

and the slaves, and by using this strategy, no interprocessor communication is

required other than that involved in forwarding data/results to and from the

processors, once for all at the beginning and the end of the computation [Hey

00].

The idea of a process farm is that a master process can compute the sequential

portions of the code independently, and then spawn slave processes when it is

time to do the parallel sections of code. This has the benefit that the

parallelizable and sequential portions of code can be completely separated

[Sac 03].

Accordingly, this paradigm can achieve high computational speedups and an

interesting degree of scalability. However, for a large number of processors the

centralized control of the master process can become a bottleneck to the

applications. It is, however, possible to enhance the scalability of the paradigm

by extending the single master to a set of masters, each of them controlling a

different group of process slaves.

For applications, such as image processing, where the same computations

have to be applied to a number of independent data sets, the processor-farm

model is becoming as the most suitable model. This is because it allows exactly

the same serial program to be implemented, assuming that enough memory is

available to accommodate the whole program, on each processor.

www.manaraa.com

42

3.3. The Proposed Distributes Image Processing (DIP)

Model

The image processing application described in Section 3.1 can be used

efficiently for edge detection in noisy images. But the algorithms used in this

applications (median filter for noise reduction and Sobel algorithm for edge

detection) are considered as time consuming application. This is because both

the median filter and Sobel algorithm are based on the time-consuming

convolution function for noise reduction and edge detection. This is especially

true when the kernel size in convolution function is increased. To overcome this

issue, this thesis is devoted to utilize the potential computing power of LAN-

based systems. Consequently, to exploit the computing power of such systems,

an efficient distribution or parallelization model is needed.

This section presents a description of a distributed image processing model. It

is referred to as the DIP model. It is proposed to speedup the time consuming

image processing computation described above, and also to run efficiently on

a LAN-based computing system that utilizes the JPVM as a parallel

environment and data communication library for message passing.

The parallel methodology that is going to be used in transferring (parallelizing)

the serial computation is based on the processor-farm strategy. In which the

modified (parallelized) version of the code is developed in two versions, one

version is developed to run as a master (server), and the other version is to run

as a slave (client). More than one slave is usually loaded and run concurrently

on different processor performing its calculation on different data (images), i.e.,

in MIMD architecture. This form of paradigm involves no inter-processor

communication and slaves are only allowed to communicate with the master.

The relationship between the master-slave is summarized as follows:

(i) The master reads-in the input data (images) and perform any require

preliminary computations.

www.manaraa.com

43

(ii) Send the data to the appropriate slave.

(iii) After completion of the computations, the slave sends the output

results back to the master processor.

(iv) The master processor performs any post-processing computations

and then presents the final outputs.

It is clear from the above relationship that the master processor is idle while

waiting for the slaves to complete their computations. Therefore, in order to

utilize the master processor to perform some useful computations, instead of

being idle while waiting, it is used to run as a slave. However, since the master-

processor starts performing its computation after sending all data to all slaves

(after all slaves start), then it is expected that all of them will finish first, and they

have to wait until the master complete its computations before sending their

results back to the master. In order to avoid this conflict, the size of the task

assigned to the master should be less, so that it can finish before the slaves

complete their computations, and be ready to receive their results.

Figure (3.7) - System architecture and the data flow of the proposed DIP

model.

www.manaraa.com

44

The DIP model can efficiently process many images at a time. These images

may be obtained from on-line (real-time) or offline image sources. On-line

image sources include capturing devices, such as: digital camera, satellite

images, etc. Off-line image processing means those images which are

captured, stored to be processed in a later time, such as internet images.

DIP uses JPVM environment as message passing tools between PCs in the

network, and the algorithm in DIP model implemented in java language.

 Figure (3.8)- Algorithm of the DIP model.

3.4 .Data Communication Library

In LAN-based distributed system, data can only be exchanged among PCs

using a message passing methodology. There are many message passing

libraries in use in distributed LAN-based distributed systems, such as:

Message-Passing Interface (MPI), Parallel Virtual Machine (PVM) and Java

Parallel Virtual Machine (JPVM) [Lee 99].

Algorithm for Master

Step 1: Initialize LAN-based System.

Step 2: Read images data.

Step 3: Initial timer.

Step 4: Select number of slaves.

Step 5: Calculate slave job.

Step 6: Send images to slaves.

Step 7: Post-processes for images.

Step 8: Receives images from slaves.

Step 9: Stop timer.

Step 10: Post processes for images.

End

Algorithm for slave

Step 1: Initialize LAN-based System.

Step 2: Receive images from master.

Step 3: Post-processes for images.

Step 4: Send images to master.

End

www.manaraa.com

45

3.4.1 Parallel Virtual Machine (PVM)

Parallel Virtual Machine (PVM) is a software system that permits a collection of

many heterogeneous computers that networked together to be one large

computer working in parallel mode [Yal 98]. The PVM is designed to link

computing resources together and provided users with a transparent efficient

parallel platform for running their computer applications. The PVM transparently

and independently handles all message routing data conversion and task

scheduling across a network of incompatible computer architectures.

Therefore, it is used in many sites all over the world to solve important problems

in scientific, engineering, industrial and in medical applications.

The PVM system can be used to run different computers in parallel mode

(concurrently), and it is designed to have many important features and

capabilities, such as:

(1) Reduce the cost to solve problems.

(2) Reduce the contention for resources.

(3) More effective implementations of an application.

(4) Make the parallel programming in a heterogeneous collection of

processors straightforward.

3.4.2 .Java Parallel Virtual Machine (JPVM)

The Java language and its libraries and environment provide a powerful and

flexible platform for programming computer clusters. Java tools enable

experimentation in both management aspects as well as performance aspects

of cluster systems [Haw 99].

The JPVM is a PVM like library of object classes implemented in and for use

with the Java programming language. The library supports an interface similar

to C and FORTRAN interfaces provided by the PVM system, but with syntax

and semantics enhancements afforded by Java and better matched to Java

programming styles.

www.manaraa.com

46

The JPVM is a combination of both ease of programming inherited from Java

and high performance through parallelism inherited from the PVM. The JPVM

library is software used for message passing in distributed memory MIMD LAN-

Based parallel computing system. The JPVM has many features not found in

standard PVM, such as [Pes 04]:

(1) JPVM is thread safety; it can control multiple Java threads inside a single

JPVM task.

(2) Standard PVM has single communication end-points for every task, but

the JPVM can create a new task within a process every time, so it has

multiple communication end-points for each task.

(3) JPVM code can be maintained much simpler than the PVM across

heterogeneous machine.

(4) JPVM has default-case direct message routing.

For as mention features of Java language and JPVM tools, the DIP model use

the JPVM as a parallel environment.

As in the PVM, the programmer decomposes the problem to be solved into a

set of cooperating sequential task implementations. These sequential tasks

execute on a collection of available processors and invoke special library

routines to control the creation of additional tasks and to pass messages among

tasks. In JPVM, task implementations are coded in Java, and support for task

creation and message passing is provided by the JPVM library.

The architecture of the JPVM is similar to architecture of the PVM, which is

consisting of the daemon, the console and the interface library functions. The

JPVM library routines require run-time support during execution in the form of

a set of JPVM daemon processes running on the available collection of

processors. The console can start in any processors in the network. The JPVM

console can be used to list the hosts available to the system and the JPVM

tasks running in the system.

www.manaraa.com

47

Tasks in the JPVM environments are process-based; however the

communications are using Transfer Control Protocol (TCP) sockets through the

network. Figure (3.9) outlines the JPVM architecture.

Figure (3.9): JPVM architecture [Lee 99].

3.5.Implementation of the DIP Model

First the JPVM platform must starting by run jpvmDaemon.java program in all

computers in the LAN-based system, then run jpvmConsole.java in one

computer as a master computer. The master controls the message passing

techniques in the network. There are two programs running in the DIP model,

the first program is the master (server) and the other program is the slave

(client), which is duplicated on all slave processors. Both of programs have the

same noise reduction and edges detection algorithms.

The master PC starts to capture or input sequence of noisy images from

devices or files, these images may have similar or different sizes. Task creation

start in master program by using jpvm.pvm_spawn() method, which has

number of slaves and the java class program for slave.

www.manaraa.com

48

When the master has number of images it is start to distribute these images

between slaves by send the same number of images for each slave in the LAN,

the distribution of images depends on the total number of images and number

of slaves.

The master does not send all images at the same time; it is sends images one

by one to each slave using a for-loop to prevent slaves from being idle while

waiting until first slaves receive their images, the images are storing in buffers.

Then each slave reads one image from the buffer and start processing. When

a slave finishes processing the image it read, then it reads another image from

buffer and so on until it processes all images sent by the master.

At this time when the master finishes send all images to slaves it start

processing number of images to save time and to be not idle and waiting receive

from slaves. This technique utilizes load balancing for computer in LAN system.

The number of images for master must be less than number of images sends

to each slave, because the master has high communication time than slaves.

Also number of processing images in master depends on number of all images

and number of slaves in LAN system.

When slaves finish processing all images, they start send processed images

back to the master. The master starts receiving all images from slaves and then

the master output all images.

3.6 .Performance Measures

In order to measure the performance of a parallel algorithm, two main factors

are considered, these are:

(1) Speedup factor (S)

(2) Parallelization Efficiency (E)

In what follows an introduction is given for each of them.

www.manaraa.com

49

 (1) Speedup factor (S)

In general, the speedup factor is defined as the ratio between the time required

to perform a particular computation on a sequential mode machine (Ts) and the

time required to perform an equivalent computation on a parallel mode machine

(Tp). Thus, the speedup factor is expressed as [Wil 99]:

pT

T
S s

 (3.6)

However, for a LAN-based distributed computing system, Ts represents the

time required to perform the computation on a single PC (single processor), and

Tp is the time required to perform the computation on all active PCs (active

processors) that includes both the master and all servers that are participating

in the computations.

Ideally, the maximum speedup that can be achieved is equal to the number of

active PCs within the LAN network. However, there are several factors that limit

and prevent the speedup from reaching its maximum value, such as:

i. Load balancing when not all processors perform useful computation

all the time, and some of the processor may be left simply idle for a

period of time during the computation.

ii. Software overhead due to the extra computation may be required in

the parallel version of the code not appearing in the sequential

version, for example, to recomputed constants locally.

iii. Communication time for data and messages exchange among the

processors.

(2) Parallelization efficiency (E)

Another factor of interest is the parallelization efficiency, which is defined as the

ratio between the speedup factor that is achieved and the maximum possible

www.manaraa.com

51

 speedup factor. The parallelization efficiency may be expressed as [Wil 99]:

100
S

E
n

  (3.7)

The n is the number of active processors within the network (master plus the

number of running slaves).

 Another way to define E as the actual computation CPU time (Tcomp) divided by

the total computation and communication times (Tp) which represents the sum

of the computation CPU time (Tcomp), communication time (Tcomm), and other

timing overheads (Tover). Accordingly, the parallelization efficiency can be given

as:

100
comp

comp comm over

T
E

T T T
 

 
 (3.8)

Since, the Tover, including setup time, is very small compared to Tcomp and Tcomm,

then Tover can be neglected and E is expressed as:

100
comp

comp comm

T
E

T T
 


 (3.9)

It is also can be expressed as:

1

100
1

E
R

 


 (3.10)

Where R is the ratio between the communication and computation times. It is

clear from the above two equations that E depends on the amount of time that

is spent on communication or on the ratio R between the communication and

computation times. The maximum efficiency can be achieved when Tcomm (i.e.,

R) approaches zero.

In this thesis, we introduce another parameter which is the image processing

rate (). It is defined as the number of images that can be processed by the

systems per unit time (say, sec). It can be expressed as:

www.manaraa.com

51

m

T
  (3.11)

Where

 is the image processing rate (Image/sec),

m is the number of images processed (Images),

T is the total job time (sec).

For a serial computations T is take to be equal to Ts, while for a parallel or

distributed computations T is taken to be equal to Tp, where Tp is the sum of

both Tcomp and Tcomm.

www.manaraa.com

52

Chapter Four
Results and Discussions

This chapter presents the performance evaluation of the distributed image

processing (DIP) model described in Chapter 3. The model is implemented to

run on a standard LAN-based computer system. The LAN composes from a

number of Personal Computers (PCs) interconnected through an Ethernet

10/100 Mbps switch. The PCs used are Acer verition GT series, Intel (R),

Pentium 4 processor with 2.8 GHz speed. The operating system is Windows

XP.

Two versions of the image processing application are developed, one is a serial

version to run on a single PC for estimating the serial computation time (Ts)

(also referred to as T1), and a parallel version of code using the DIP model for

estimating the parallel computation time (Tp) (also referred to as Tn, where n is

the number of PCs on which the computations are concurrently performed).

Both programs are written in Java language and the Java Parallel Virtual

Machine (JPVM) is used as data communication library for message passing

between the processors.

The image processing analysis considered is performing edge detection in

noisy images. Sobel algorithm is used for efficient edge detection, and in order

to enhance the performance of the algorithm for estimating edges in noisy

images, a noise reduction techniques based on median filter is used to reduce

or ultimately remove noise for the image before proceeding with edge detection.

Both the Sobel algorithm and the median filter are based on convolution

function. The accuracy of the edge detection process depends on the size of

the convolution function. In this work, a convolution function of 3x3 and 5x5

kernel sizes are considered.

The performance of the DIP model is evaluated in terms of a number of

parameters, which are defined in Chapter 3, these are:

www.manaraa.com

53

(1) Speedup factor (S)

(2) Parallelization efficiency (E)

(3) Image processing rate () (Image/sec)

Section 4.1 investigates the effect of the convolution function kernel size on the

total computation time, which enable use to estimate the image average

processing time. In Section 4.2, the performance of the DIP model when

implemented on a LAN-based system to perform image processing analysis,

using 3x3 and 5x5 convolution function kernel sizes, on various numbers of

noisy images of 256x256 size. The performance of the DIP model for these two

different kernel sizes is compared in Section 4.3.

4.1. Investigate the Effect of the Convolution Function

Kernel Size

It has been discussed in Chapter 3 that the image processing application this

thesis concerned with is edge detection in images distorted with impulsive

noise. The edge detection algorithm used is the astonishing Sobel algorithm. In

order to enhance the performance of this algorithm for effectively estimating

edges in noisy images, each image is preprocessed for noise reduction using

median filter. Both the edge detection algorithm and the noise reduction filter

use a convolution function. The size of the convolution function affects the

performance of the application in terms of accuracy and processing

(computation) time. A more accurate solution can always be obtained with

higher kernel size (see Figure (4.1)), but this is at the cost of higher computation

time.

www.manaraa.com

54

 (a) (b) (c)

Figure (4.1): Comparison images.

 (a) Lena image with distorted wit impulsive noise.

 (b) Edge detected with 3x3 kernel size.

 (c) Edge detected with 5x5 kernel size.

This section investigates the effect of the size of convolution function on the

computation time (Tcomp) for various numbers of noisy images (m) of size

256x256. The results obtained are tabulated in Table (4.1) and plotted in Figure

(4.2). The results obtained illustrate the following:

i. The Tcomp increases linearly with m.

ii. The average Tcomp is about 0.12 sec/image for 3x3 kernel size, and

about 0.36 sec/image for 5x5 kernel size.

iii. The Tcomp for 5x5 kernel size is about 3 times the time for 3x3 kernel

size.

iv. The image processing time is around 8 image/sec for 3x3 kernel size

and around 2.7 image/sec for 5x5 kernel size, because the 5x5 kernel

is more time consuming. It is calculated by dividing the total number of

images processed by total computation time as given by Equation

(3.11). But, at the same time it is more accurate.

Table (4.1)
Serial computation time (Ts) and image processing rate () using 3x3

and 5x5 convolution function kernel sizes.

No. of
images

Computation time (Ts)
(sec)

Image processing rate ()
(Image/sec)

3x3 5x5 3x3 5x5

100 12.50 36.63 8.00 2.73

200 24.91 73.06 8.03 2.74

300 37.20 109.83 8.07 2.73

400 49.66 146.02 8.05 2.74

500 62.03 182.50 8.06 2.74

600 74.82 219.90 8.02 2.73

700 86.88 255.77 8.06 2.74

800 99.45 292.05 8.04 2.74

www.manaraa.com

55

900 111.21 328.63 8.09 2.74

1000 123.73 365.27 8.08 2.74

1100 136.02 401.28 8.09 2.74

1200 149.80 437.72 8.01 2.74

1300 162.66 473.92 7.99 2.74

1400 174.78 509.27 8.01 2.75

1500 186.01 545.20 8.06 2.75

 Number of operations in 3x3 kernel size convolution function are

589824.

 Number of operations in 5x5 kernel size convolution function are

1638400.

Figure (4.2). Serial computation time vs. number of images for 3x3 and

5x5 convolution function kernel sizes.

4.2. Performance Evaluation

This section evaluates the performance of the DIP model running on the LAN-

based computer systems described above. The performance is evaluated in

terms of S, E, and for various numbers of collaborative PCs (n), and various

m feed into the system. The accuracy of the serial and the parallel versions of

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600

Number of images (m)

S
er

ia
l
co

m
p

u
ta

ti
o

n
 t
im

e

 T
s

(s

ec
)

 .

3x3

5x5

www.manaraa.com

56

 code are validated against each other, and they demonstrate an excellent

agreement between them. Furthermore, in order to investigate the effect of

Tcomp and Tcomm (communication time) on the performance of the model, the

image processing computations are performed for a convolution function of

various kernel size, these are: 3x3 and 5x5.

(1) Results for 3x3 convolution function kernel size

For a convolution function of 3x3 kernel size, the DIP model is used to

parallelize the image processing application for edge detection in noisy images

using the algorithms described in Figure (3.8), to run on the LAN-based system.

The computation is performed for various m, in practice, up to 1500 images

were processed, but the results demonstrate little variation, therefore, we

present results for up to 500 images.

The results obtained for the serial Tcomp (in this case it is also referred to as Ts);

which is equivalent to the Tcomp on a single PC (T1), parallel Tcomp (in this case

it is also referred to as Tp); which is equivalent to the Tcomp on n PCs (Tn) (n≥2),

S, E, and , are presented in Table (4.2).

Table (4.2)
 Comparison of the performance of the DIP model running on a LAN-

based system of various number PCs (n≤5) and images (m≤500).
(Results for 3x3 convolution function computation)

No. of
images

No. of processors (PCs) (n)

1 2 3 4 5

CPU time (sec)

 Ts Tp

 T1 T2 T3 T4 T5

100 12.50 9.31 8.62 8.30 7.67

200 24.91 17.88 17.20 15.76 15.06

300 37.20 29.88 25.71 23.79 22.30

400 49.66 41.58 35.00 31.62 29.89

500 62.03 52.92 43.17 38.91 36.88

Speedup factor (S)

100 Serial
Computation

(S=1)

1.34 1.45 1.51 1.63

200 1.39 1.45 1.58 1.65

300 1.24 1.45 1.56 1.67

www.manaraa.com

57

400 1.19 1.42 1.57 1.66

500 1.17 1.44 1.59 1.68

Parallelization efficiency (E) (%)

100

Serial
Computation

(E=100)

67.1 48.4 37.7 32.6

200 69.7 48.3 39.5 33.1

300 62.2 48.2 39.1 33.4

400 59.7 47.3 39.3 33.2

500 58.6 47.9 39.9 33.6

Image processing rate () (Image/sec)

100 8.00 10.74 11.60 12.05 13.03

200 8.03 11.19 11.63 12.69 13.28

300 8.07 10.04 11.67 12.61 13.45

400 8.05 9.62 11.43 12.65 13.38

500 8.06 9.45 11.58 12.85 13.56

According to the results presented in Table (4.2), the following points can be

identified:

i. For equivalent computations (i.e., for the same number of images), E

is decreasing as n increases, and almost it steadily decreases

between 70% for 2 PCs to 30% for 5 PCs.

This is because as given in Equations (3.9) and (3.10), when the

number of PCs increases, the number of images allocated for each

PC is decreased and consequently the Tcomp is also decreased.

Furthermore, as n increases, the Tcomm is increased, which means R

is increased, where R is defined as the ratio between Tcomm and Tcomp.

The Tcomm is increasing as n increases, because the total number of

images exchanged across the networks is also increased. For

example, if m=500 images, for n=2 PCs, the number of images

exchanges is 250 images. While for n=3, 4, and 5, the numbers of

images exchanged are 334, 375, 400 images, respectively.

ii. For serial computation (1 PC), as discussed in Section 4.1, the total

Tcomp increases steadily as m increases, with average Tcomp of 0.12

sec/image. For parallel computation (n≥2), we can recognize two

types of behavior. For n=2 and n=3, S and E are decreasing as m

www.manaraa.com

58

iii. increases. For example, for n=2, E decreases from 67.1% (m=100

images) to 58.6% (500 images). On average, we can estimate that it

is reduced by ≈2% for each extra 100 images. However, for n=3, it is

reduced by ≈0.1% for each extra 100 images. For a certain value of n

(n>3), S and E are almost remained unchanged with m, however, only

slight increase is recognized.

iv. A speedup of approximately 1.6 can be achieved for 5 PCs running

concurrently with a parallelization of efficiency of just above 30%. This

is mainly because the processing time per image is very low, and

although we increase the number of images, but this adds

communication overheads, so that R almost remains unchanged and

consequently the parallelization efficiency.

v. For a particular m, it is clear that when n increases, Tp is decreasing,

and consequently increases as it is given by Eqn. (3.11) as, where

=m/Tp.

Figures (4.3) and (4.4) show the variation of S and E with n for various values

of m.

www.manaraa.com

59

Figure (4.3). Variation of S with n for various values of m and 3x3 kernel size.

Figure (4.4). Variation of E with n for various values of m and 3x3 kernel size.

(2) Results for 5x5 convolution function kernel size

The following set of runs is equivalent to the above set, except it uses a

convolution function of 5x5 kernel size, so that Tcomp is actually increased

without affecting Tcomm. As it had been shown in Section 4.1 that the

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5

Number of PCs (n)

S
p
ee

d
u
p
 f

ac
to

r

(S

).

100 Images

200 Images

300 Images

400 Images

500 Images

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Number of PCs (n)

P
ar

al
le

li
za

ti
o
n
 e

ff
ic

ie
n
cy

,

 E

(%

)
.

100 Images

200 Images

300 Images

400 Images

500 Images

www.manaraa.com

61

 computation time is 0.36 sec/image for 5x5 kernel size. Once again, the

computation is performed for various m, in practice, up to 1500 images were

processed, but the results demonstrate little variation, therefore, we present

results for up to 500 images.

Table (4.3)
Comparison of the performance of the DIP model running on a LAN-based

system of various number PCs (n≤5) and images (m≤500).
(Results for 5x5 convolution function computation)

No. of
images

No. of processors (PCs) (n)

1 2 3 4 5

CPU time (sec)

 Ts Tp

 T1 T2 T3 T4 T5

100 36.6 21.7 16.6 14.2 12.4

200 73.1 42.4 31.9 27.3 24.2

300 109.8 63.1 47.6 40.7 36.2

400 146.0 83.3 63.6 52.7 48.1

500 182.5 104.9 79.3 66.0 59.5

Speedup factor (S)

100

Serial
Computation

(S=1)

1.69 2.20 2.58 2.95

200 1.72 2.29 2.68 3.02

300 1.74 2.31 2.70 3.03

400 1.75 2.30 2.77 3.04

500 1.74 2.30 2.77 3.07

Parallelization efficiency (E) (%)

100

Serial
Computation

(E=100)

84.3 73.5 64.4 59.0

200 86.2 76.4 66.9 60.4

300 87.0 76.9 67.4 60.7

400 87.6 76.5 69.3 60.7

500 87.0 76.7 69.1 61.3

Image processing rate () (Image/sec)

100 2.73 4.61 6.02 7.04 8.06

200 2.74 4.72 6.27 7.33 8.26

300 2.73 4.75 6.30 7.37 8.29

400 2.74 4.80 6.29 7.59 8.32

500 2.74 4.77 6.31 7.58 8.40

The results obtained for Ts, Tp, S, E, and , are tabulated in Table (4.3). The

following points can be identified:

www.manaraa.com

61

i. Using 5x5 convolution function provides better accuracy for edge

estimation than 3x3 convolution function.

ii. Once again, for the same number of images, E is steadily decreasing

as n increases, but with lower rate when compared with 3x3

convolution function. For example, for m=100 images, it decreases

from ≈84% for 2 PCs to ≈60% for 5 PCs. This demonstrates that the

performance is highly improved when the relative Tcomp is increased,

while Tcomm is remained unaltered.

Despite the fact that Tcomp is relatively high (3 times higher), but as

discussed above when n increases, the Tcomm increases to become

the dominant factor, so that the efficiency is reduced. However, this

time, for a particular number of PCs and images, Tcomp increases,

while Tcomm remains unchanged giving lower value for R and as a

result relatively higher E.

vi. Unlike 3x3 convolution function computation; because Tcomp is

dominant, for any value of n, E is increasing with m. However, the

increasing rate is decreasing as n increases, and when n is further

increased, Tcomm may become the dominant factor, so that E will start

decreasing.

However, this scalability problem is the main drawback of the DIP

model or the processor-farm methodology. The optimum number of

PCs that can be used within the LAN-based system depends on the

value of R.

vii. A speedup factor of approximately 3 can be achieved for 5 PCs

running concurrently with a parallelization of efficiency of just above

60%. This can be considered as an excellent performance and subject

to increase as the relative Tcomp increases.

Further numerical examples can be deduced from Table (4.3). Figures (4.5)

and (4.6) show the variation of S and E against n for various values of m for

5x5 convolution function computation.

www.manaraa.com

62

Figure (4.5). Variation of S with n for various values of m and 5x5 kernel size.

Figure (4.6). Variation of E with n for various values of m and 5x5 kernel size.

4.3. Performance Comparison

In this section, we illustrate crucial conclusions regarding the performance and

effectiveness of the DIP model for image processing applications running on

LAN-based systems.

1.0

1.4

1.8

2.2

2.6

3.0

1 2 3 4 5

Number of PCs (n)

S
p

ee
d

u
p
 f

ac
to

r

(S
).

100 Images

200 Images

300 Images

400 Images

500 Images

50

60

70

80

90

100

1 2 3 4 5

Number of PCs (n)

P
ar

al
le

li
za

ti
o
n
 e

ff
ic

ie
n
cy

,

 E

(%

)
.

100 Images

200 Images

300 Images

400 Images

500 Images

www.manaraa.com

63

A LAN-based system of n PCs may provides an excellent performance in terms

of S and E, if the image processing time is high as compared to the image

exchange time, regardless of the number of images processed. It was made

obvious above that when the average image processing time increases by 3

times (from 0.12 to 0.35 Image/sec), for 5 PCs LAN-based system, S increases

≈1.6 to ≈3.0, and E is nearly doubled as it increases from 30% to 60%,

regardless of the number of images. This means that a higher S and E can be

achieved if the image processing time becomes even higher and higher.

Figures (4.7) and (4.8) show the variation of S and E with n for processing 300

and 500 images with 3x3 and 5x5 convolution function kernel sizes. They

illustrate that 5x5 kernel size provides a higher performance values in terms of

S and E.

 It can be clearly seen from the above discussion that the DIP model

demonstrates an excellent performance when implemented to run on the cost-

effective LAN-based distributed processing systems for image processing

applications, and the performance and effectiveness of the model are improving

with increasing the image processing time. This encourages us to do more

accurate analysis on each image so that comprehensive image processing

applications can be designed with less cost.

Figure (4.7). Variation of S with n for various values of m and kernel size.

1.0

1.4

1.8

2.2

2.6

3.0

1 2 3 4 5

Number of PCs (n)

S
p
ee

d
u
p
 f

ac
to

r

(S

).

300 Images (5x5)

300 Images (3x3)

500 Images (5x5)

500 Images (3x3)

www.manaraa.com

64

Figure (4.8). Variation of E with n for various values of m and kernel size.

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Number of PCs (n)

P
ar

al
le

li
za

ti
o
n
 e

ff
ic

ie
n
cy

,

 E

(%

)
.

300 Images (5x5)

300 Images (3x3)

500 Images (5x5)

500 Images (3x3)

www.manaraa.com

65

Chapter Five
Conclusions and Recommendations for Future Work

5.1. Conclusions

The main conclusions of this work can be summarizes as follows:

(1) The image processing algorithms demonstrated a satisfactory accuracy,

especially with the implementation of the median filter algorithm for noise

reduction or removal (image enhancement). But, such image processing

application was found to be computationally time consuming application.

(2) A standard Ethernet LAN-based computing system can be successfully

used as a cost-effective, efficient, and reliable computing platform to

speedup such computations, subject to the development of an efficient

parallel (distributed) implementation model.

(3) The proposed distributed image processing (DIP) model that is based on

the well-known processor-farm parallel methodology, demonstrated an

excellent performance (in terms of efficiently speeding up image

processing computations), and it performs even better when the

computation resources increase.

(4) The Java Parallel Virtual Machine (JPVM) library is proved to be an

efficient and a reliable tool of data communications (message passing)

between PCs within a LAN.

(5) The main characteristics of the DIP model are:

a. It is simple and easy to implant and configured according to the

application needs. As in this model the same version of the code

is running on all slaves, with little variation required for the master.

b. It involves no interprocessor communications during the

computation process, apart from that requires for exchanging

data/results at the start/end of the computations.

www.manaraa.com

66

c. It can provide an exceptional load balance across the network.

d. It can handle various numbers of PCs within the LAN without any

variation in the running code.

e. It can be easily modified to run on various LAN technologies or

data communication libraries for message passing.

(6) The speedup factor (S), the parallelization efficiency (E), and Image

processing rate () depend on the following main parameters:

f. The actual number of PCs (n) in uses performing computations

concurrently.

g. Image computation (processing) time (Tcomp), which depends on

the size of the processed image and the details of the image

processing application.

h. Image communication time (Tcomm), which is a function of the LAN

technology and the size of the image.

In addition to the above general conclusions, a number of numerical

conclusions can be identified. For example, for the image processing

application, parallelization model (DIP model), message passing library

(JPVM), size of the image, and the LAN-based system, described in this thesis,

the following numerical wrapping up performance values can recognized:

(1) Regarding our application, changing the size of the convolution

function from 3x3 to 5x5 increased the image processing time by triple

from 0.12 sec/image to 0.36 sec/image.

(2) S is directly proportional to n (n≤5). For example, for image processing

time of 0.12 sec/image, S increased from ≈1.3 to ≈1.6 when n

increased from 2 to 5 PCs. While for 0.36 sec image processing time,

S increased from ≈1.7 to ≈3.0 for the same range of n.

www.manaraa.com

67

(3) E is inversely proportional to n (n≤5). For example, for image

processing time of 0.12 sec/image, E decreased from ≈67% to ≈30%

when n increased from 2 to 5 PCs. While for 0.36 sec image processing

time, E decreased from ≈85% to ≈60% for the same range of n.

(4) This means that tripling the image processing time leads to double

speedup and efficiency.

(5) The number of images processed (m) has insignificant effect on the

performance.

5.2.Recommendations for Future Work

The main recommendations for future work may include:

(1) In order to provide a comprehensive performance evaluation of LAN-

based computing systems implementing the processor-farm-based DIP

model, it is important to evaluate the performance under the following

conditions:

a. More time consuming image processing applications.

b. Different image size, e.g., 512x512.

c. More number of PCs connected to the LAN.

d. Different network technologies, protocols, and topologies.

(2) Developed DIP models based on the other parallel programming

methodologies (algorithmic model or geometric model), evaluate the

performance achieved, and for equivalent computations compare the

performance of implementing all three methodologies on a similar LAN-

based system.

www.manaraa.com

68

References

[Bal 08] F. Baldacci and P. Desbarats, “Parallel 3D Split and Merge

Segmentation with Oriented Boundary Graph”, WSCG 2008

Advanced Conference Program, 2008, available at http://wscg.zcu.cz

/WSCG2008 /wscg_program .htm, last visited 2008.

[Bau 02] Lewis Baumstark and Linda Wills, "Exposing Data-Level Parallelism

in Sequential Image Processing Algorithms", Proceedings of the 9th

Working Conference on Reverse Engineering (WCRE-02), pp. 245-

254, 2002.

[Bev 99] Alessandro Bevilacqua, “A Dynamic Load Balancing Method on A

Heterogeneous Cluster of Workstations”, Journal Informatica, Vol.

23, pp. 49-56, 1999.

[Bha 00] Haresh S. Bhatt, V. H. Patel and A. K. Aggarwal, “Web Enable Client-

Server Model for Development Environment of Distributed Image

Processing”, Proceedings of the First IEEE/ACM International

Workshop on Grid Computing, Vol. 1971, pp. 135–145, 2000.

[Caa 05] Wouter Caarls, Pieter Jonker and Henk Corporaal, "Skeletons and

Asynchronous RPC for Embedded Data and Task Parallel Image

Processing", MVA2005 IAPR, Conference on Machine Vision

Application, Tsukuba Science City, pp. 16-18, 2005.

[Bra 01] Thomas Bräunl, "Tutorial in Data Parallel Image Processing",

Australian Journal of Intelligent Information Processing Systems

(AJIIPS), Vol. 6, No. 3, pp. 164-174, 2001.

www.manaraa.com

69

[Civ 04] P. Civicioglu and M. Alci, "Edge Detection of Highly Distorted Image

Suffering from Impulsive Noise", International Journal of Electronics

and Communications, Vol. 58, pp. 413-419, 2004.

[Con 05] Jared O’Connell and Peter Caccetta, "A Parallel Implementation of

an Image Processing Algorithm", CSIRO Mathematics & Information

Sciences Private, APAC conference and exhibition on advanced

computing, No. 2123, 2005.

[Cle 06] A. Clematis, D. D’Agostino and A. Galizia, “A Parallel IMAGE

Processing Server for Distributed Applications”, John von Neumann

Institute for Computing, NIC Series, Vol. 33, pp. 607-614, 2006.

[Fat 04] Hamed Fatemi, Henk Corporaal, Twan Basten, Pieter Jonker and

Richard Kleihorst, "Implementing Face Recognition Using a Parallel

Image Processing Environment Based on Algorithmic Skeletons",

Proceedings of the 10th Annual Conference of the Advanced School

for Computing and Imaging, pp. 351-357, 2004.

[Fer 98]

Adam Ferrari, "JPVM: Network Parallel Computing in Java",

Concurrency- Practice and Experience, Vol. 10, No. 11-13, pp. 985-

992, 1998.

[Fis 94] Bob Fisher, Simon Perkins, Ashley Walker and Erik Wolfart,

"Convolution", Department of Artificial Intelligence, University of

Edinburgh, available at

http://www.cee.hw.ac.uk/hipr/html/hipr_top.html , 1994, last visit 2008.

http://www.cee.hw.ac.uk/hipr/html/hipr_top.html

www.manaraa.com

71

[Fis 03] R. Fisher, S. Perkins, A. Walker and E. Wolfart, “Sobel Edge

Detector”, available at

http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm, 2003, last visit

2008.

[Fly 72] M. J. Flynn, "Some Computer Organizations and Their Effectiveness",

IEEE Transactions on Computing C-21, No. 9, pp 948-960, 1972.

[Gal 99] J. A. Gallud, J. M. Garcia and J. Garcia-Consuegra, “Cluster

Computing Using MPI and Windows NT to Solve the Processing

of Remotely Sensed Imagery”, Publisher Springer Berlin / Heidelberg

, Vol. 1697, pp. 675, 1999.

[Gon 02] Rafael C. Gonzalez and Richard E. Woods, Digital Image

Processing, Prentice-Hall Inc., 2nd Edition, 2002.

[Gra 02] Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar,

Introduction to Parallel Computing, PEARSON, Addison Wesley,

second edition, 2002.

[Haw 99] K. A. Hawick, H. A. James, J. A. Mathew and P. D. Coddington, “Java

Tools and Technologies for Cluster Computing”, Distributed & High

Performance Computing Group, Department of Computer Science,

University of Adelaide, Australia SA 5005, Technical Note DHPC-077,

1999.

[Hey 00] Elisa Heymann, Miquel A. Senar, Emilio Luque and Miron Livny,

“Adaptive Scheduling for Master-Worker Applications on the

Computational Grid”, Proceedings of the First IEEE/ACM

International Workshop on Grid Computing, Vol. 1971, pp. 214 –

227.

www.manaraa.com

71

[Hoc 88] R. Hockney and C. Jesshope, Parallel Computers 2, Adam Hilger,

Ltd. , Bristol, United Kingdom, 1988.

[Kel 05] H. Kelash, M. Zaki Gamal El_Dein, N.Kamel, "Agent Distribution

Based Systems for Parallel Image Processing", GVIP 05

Conference, CICC, Cairo, Egypt, 2005.

[Lee 99] Bu-Sung Lee, Yan Gu, Wentong Cai and Alfred Heng, “Performance

Evaluation of JPVM”, Journal Parallel Processing Letters, Vol. 9,

No. 3, pp. 401- 410, 1999.

[Mai 06] Raman Maini and J. S. Sohal, "Performance Evaluation of Prewitt Edge

Detector for Noisy Images", GVIP Journal, Vol. 6, Issue 3, 2006.

[Man 06] A. K. Manjunathachari and K. SatyaPrasad, "Implementation of Image

Processing Operations Using Simultaneous Multithreading and Buffer

Processing", GVIP Journal, Volume 6, Issue 3, 2006.

[Mat 04] James Matthews, “An Introduction to Noise Processing”,

Generation5, available at.

http://www.generation5.org/content/2004/noiseIntro.asp, 2004.

[Met 00] Glenn Metherall, "Local Segmentation of Images", School of

Computer Science and Software Engineering, Monash University,

Thesis, available at.

http://www.csse.monash.edu.au/hons/projects/2000/Glenn.Metherall,

2000, last visited 2008.

[Nic 02] Cristina Nicolescu and Pieter Jonker, "A Data and Task Parallel Image

Processing Environment”, Elsevier Science B.V., Parallel Computing,

Vol. 28, pp. 945-965, 2002.

http://www.generation5.org/profile.asp?id=1
http://www.csse.monash.edu.au/hons/projects/2000/Glenn.Metherall

www.manaraa.com

72

[Paz 08] Abel Paz, Antonio Plaza and Soraya Blazquez, “ Parallel

Implementation of Target and Anomaly Detection Algorithm for

Hyperdpectral Imagery”, IEEE International Geoscience & Remote

Sensing Symposium Conference, 2008.

[Pes 04] Dan A. Pescaru and Muguras D. Mocofan, “An Easy-to-use

Distributed Framework for Image Processing”, FACTA

UNIVERSITATIS (Nis), Series: Electronics and Energetics, Vol. 17,

Issue No. 3, pp. 453- 464, 2004.

[Pla 06] Antonio Plaza, David Valencia, Javier Plaza, Juan Sanchez-Testal,

Sergio Munoz and Soraya Blazquez, “Parallel Implementation of

Hyperspectral Image Processing Algorithms”, IEEE International

Geoscience and Remote Sensing Symposium, 2006.

[Qiu 02] Zhenge Qiu, ZengBo. Qian, Zhihui Gong and Qing Xu, “Fast Parallel

Image Matching Algorithm on Cluster”, ISPRS, Symposium on

Geospatial Theory, Processing and Applications, 2002.

[Rao 06] Daggu Venkateshwar Rao, Shruti Patil, Naveen Anne Babu, and V.

Muthukumar, "Implementation and Evaluation of Image Processing

Algorithms on Reconfigurable Architecture Using C-Based Hardware

Descriptive Languages", International Journal of Theoretical and

Applied Computer Sciences, Vol. 1, No. 1, pp. 9–34, 2006.

[Rou 05] Mohamed Roushdy, “Comparative Study of Edge Detection Algorithms

Applying on the Grayscale Noisy Image Using Morphological Filter”,

GVIP Journal, Volume 6, Issue 4, 2006.

www.manaraa.com

73

[Sac 03] Nathan Sachs and Jeffrey McGough, “A Hybrid Process Farm/Work

Pool Implementation in a Distributed Environment Using MPI”,

MICS 2003 Proceedings The 36th Annual, Midwest Instruction and

Computing Symposium, Mathematics and Computer Science, 2003.

[Sch 07] Frank Schurz and Dietmar Fey, "A Programmable Parallel

Processor Architecture in FPGAs for Image Processing Sensors",

Integrated Design and Process Technology, IDPT-2007, pp. 30-35,

2007.

[Sil 99] Luis Moura E. Silva and Rajkumar Buyya. Parallel programming

models and paradigms. In R-jkumar Buyya, editor, High Performance

Cluster Computing, Vol. 2, Programming and Applications, pp. 427.

Prentice Hall PTR, Chap. 1, 1999.

[Ste 06] Gheorghe Stefan, "Integral Parallel Computation", Proceedings of

the Romanian Academy, Series A, Vol. 7, 2006.

[Wac 05] Alf Wachsmann,”Parallel Computing: Clustering and Shared

Memory”, Stanford Linear Accelerator Center (SLAC), 2005, available

at. http://researchcomp.stanford.edu/hpc/archives/HPCparallel.pdf,

last visited 2008.

[Tan 03] Andrew S. Tanenbaum, Computer Networks, Pearson Education,

Inc., publishing as Prentice Hall PTR, 4th Edition, 2003.

[Wag 97] Alan S. Wagner, Halsur V. Sreekantaswamy and Samuel T. Chanson,

“Performance Models for the Processor Farm Paradigm”, IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

Vol. 8, No. 5, 1997.

www.manaraa.com

74

[Wil 99] G. Wilson, Parallel Programming for Scientists and Engineers, MIT

Press, Cambridge, MA, 1999.

[Yal 98] Narendar Yalamanchilli and William Cohen, “Communication

Performance of Java based Parallel Virtual Machines”, Department

of Electrical and Computer Engineering, University of Alabama in

Huntsville, USA, 1998.

www.manaraa.com

75

